Skip to main content
Log in

Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Production of bioluminescence theoretically represents a cost, energetic or otherwise, that could slow Vibrio fischeri growth; however, bioluminescence is also thought to enable full symbiotic colonization of the Euprymna scolopes light organ by V. fischeri. Previous tests of these models have proven inconclusive, partly because they compared nonisogenic strains, or undefined and/or pleiotropic mutants. To test the influence of the bioluminescence-producing lux operon on growth and symbiotic competence, we generated dark ∆luxCDABEG mutants in strains MJ1 and ES114 without disrupting the luxR-luxI regulatory circuit. The MJ1 ∆luxCDABEG mutant out-competed its visibly luminescent parent ~26% per generation in a carbon-limited chemostat. Similarly, induction of luminescence in the otherwise dim ES114 strain slowed growth relative to ΔluxCDABEG mutants. Some culture conditions yielded no detectable effect of luminescence on growth, indicating that luminescence is not always growth limiting; however, luminescence was never found to confer an advantage in culture. In contrast to this conditional disadvantage of lux expression, ES114 achieved ~fourfold higher populations than its ∆luxCDABEG mutant in the light organ of E. scolopes. These results demonstrate that induction of luxCDABEG can slow V. fischeri growth under certain culture conditions and is a positive symbiotic colonization factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Björkman J, Hughes D, Andersson DI (1998) Virulence of antibiotic-resistant Salmonella typhimurium. Proc Natl Acad Sci USA 31:3949–3953

    Article  Google Scholar 

  • Blanc-Potard A, Gari E, Spirito F, Figueroa-Bossi N, Bossi L (1995) RNA polymerase (rpoB) mutants selected for increased resistance to gyrase inhibitors in Salmonella typhimurium. Mol Gen Genet 247:680–692

    Article  PubMed  CAS  Google Scholar 

  • Boettcher KJ, Ruby EG (1990) Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J Bacteriol 172:3701–3706

    PubMed  CAS  Google Scholar 

  • Boettcher KJ, Ruby EG (1995) Detection and Quantifiction of Vibrio fischeri autoinducer from symbiotic squid light organs. J Bacteriol 177:1053–1058

    PubMed  CAS  Google Scholar 

  • Bose JL et al (2007) Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol Microbiol 65:538–553

    Article  PubMed  CAS  Google Scholar 

  • Bourgois J-J, Sluse FE, Baguet F, Mallefet J (2001) Kinetics of light emission and oxygen consumption by bioluminescent bacteria. J Bioeng Biomembr 33:353–363

    Article  CAS  Google Scholar 

  • Boylan M, Miyamoto C, Wall L, Grahm A, Meighen E (1989) LuxC, D, and E genes of the Vibrio fischeri luminescence operon code for the reductase, transferase, and synthetase enzymes involved in aldehyde biosyntheses. Photochem Photobiol 49:681–688

    Article  PubMed  CAS  Google Scholar 

  • Callahan SM, Dunlap PV (2000) LuxR- and acyl-homoserine-lactone-controlled non-lux genes define a quorum sensing regulon in Vibrio fischeri. J Bacteriol 182:2811–2822

    Article  PubMed  CAS  Google Scholar 

  • Czyz A, Plata K, Wegrzyn G (2003) Stimulation of DNA repair as an evolutionary drive for bacterial bioluminescence. Luminescence 18:140–144

    Article  PubMed  CAS  Google Scholar 

  • Czyz A, Wrobel B, Wegrzyn G (2000) Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiol 146:283–288

    CAS  Google Scholar 

  • Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ (2004) NO means “yes” in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cellular Microbiology 6:1139–1151

    Article  PubMed  CAS  Google Scholar 

  • Diederich L, Roth A, Messer W (1994) A versatile plasmid vector system for the regulated expression of genes in Escherichia coli. Biotechniques 16:916–923

    PubMed  CAS  Google Scholar 

  • Duane W, Hastings JW (1975) Flavin mononucleotide reductase of luminous bacteria. Mol Cell Biochem 6:53–64

    Article  PubMed  CAS  Google Scholar 

  • Dunlap PV, Kita-Tsukamoto K, Waterbury JB, Callahan SM (1995) Isolation and characterization of a visibly luminous variant of Vibrio fischeri strain ES114 from the sepiolid squid Euprymna scolopes. Arch Microbiol 164:194–202

    Article  CAS  Google Scholar 

  • Dunn AK, Martin MO, Stabb EV (2005) Characterization of pES213, a small mobilizable plasmid from Vibrio fischeri. Plasmid 54:114–134

    Article  PubMed  CAS  Google Scholar 

  • Dunn AK, Millikan DS, Adin DM, Bose JL, Stabb EV (2006) New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl Environ Microbiol 72:802–810

    Article  PubMed  CAS  Google Scholar 

  • Eberhard A (1972) Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 109:1101–1105

    PubMed  CAS  Google Scholar 

  • Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781

    Article  PubMed  CAS  Google Scholar 

  • Fidopiastis PM, Miyamoto C, Jobling MG, Meighen EA, Ruby EG (2002) LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol Microbiol 45:131–143

    Article  PubMed  CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    PubMed  CAS  Google Scholar 

  • Graf J, Dunlap PV, Ruby EG (1994) Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J Bacteriol 176:6986–6991

    PubMed  CAS  Google Scholar 

  • Gray KM, Greenberg EP (1992a) Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ. J Bacteriol 174:4384–4390

    PubMed  CAS  Google Scholar 

  • Gray KM, Greenberg EP (1992b) Sequencing and analysis of luxR and luxI, the luminescence regulatory genes from the squid light organ symbiont Vibrio fischeri ES114. Mol Mar Biol Biotechnol 1:414–419

    CAS  Google Scholar 

  • Harvey EN (1952) Bioluminescence. Academic Press, New York

    Google Scholar 

  • Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Annu Rev Microbiol 31:549–595

    Article  PubMed  CAS  Google Scholar 

  • Holms WH, Hamilton ID, Robertson AG (1972) The rate of turnover of the adenosine triphosphate pool of Escherichia coli growing aerobically in simple defined media. Arch Mikrobiol 83:95–109

    Article  PubMed  CAS  Google Scholar 

  • Hussa EA, O’Shea TM, Darnell CL, Ruby EG, Visick KV (2007) Two-component response regulators of Vibrio fischeri: Identification, mutagenesis, and characterization. J Bacteriol 189:5825–5838

    Article  PubMed  CAS  Google Scholar 

  • Jin DJ, Gross CA (1989) Characterization of the pleiotropic phenotypes of rifampin-resistant rpoB mutants of Escherichia coli. J Bacteriol 171:5229–5231

    PubMed  CAS  Google Scholar 

  • Karl D, Nealson KH (1980) Regulation of cellular metabolism during synthesis and expression of the luminous system in Beneckea and Photobacterium. J Gen Microbiol 117:357–368

    CAS  Google Scholar 

  • Keynan A, Hastings JW (1961) The isolation and characterization of dark mutants of luminous bacteria. Biol Bull 121:375

    Google Scholar 

  • Kozakiewicz J, Gajewska M, Lyzen R, Czyz A, Wegrzyn G (2005) Bioluminescence-mediated stimulation of photoreactivation in bacteria. FEMS Microbiol Lett 250:105–110

    Article  PubMed  CAS  Google Scholar 

  • Lanzer M, Bujard H (1988) Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci USA 85:8973–8977

    Article  PubMed  CAS  Google Scholar 

  • Lee K-H, Ruby EG (1994) Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis. J Bacteriol 176:1985–1991

    PubMed  CAS  Google Scholar 

  • Lei B, Liu M, Huang S, Tu S-C (1994) Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme. J Bacteriol 176:3552–3558

    PubMed  CAS  Google Scholar 

  • Lin JW, Chao YF, Weng SF (1998) Characteristic analysis of the luxG gene encoding the probable flavin reductase that resides in the lux operon of Photobacterium leiognathi. Biochem Biophys Res Commun 246:446–452

    Article  PubMed  CAS  Google Scholar 

  • Lupp C, Hancock RE, Ruby EG (2002) The Vibrio fischeri sapABCDF locus is required for normal growth, both in culture and in symbiosis. Arch Microbiol 179:57–65

    Article  PubMed  CAS  Google Scholar 

  • Makemson JC (1986) Luciferase-dependent oxygen consumption by bioluminescent Vibrios. J Bacteriol 165:461–466

    PubMed  CAS  Google Scholar 

  • Makemson JC, Hastings JW (1986) Luciferase-dependent growth of cytochrome-deficient Vibrio harveyi. FEMS Microbiol Ecol 38:79–85

    Article  CAS  Google Scholar 

  • McCann J, Stabb EV, Millikan DS, Ruby EG (2003) Population dynamics of Vibrio fischeri during infection of Euprymna scolopes. Appl Environ Microbiol 69:5928–5934

    Article  PubMed  CAS  Google Scholar 

  • Meighen EA (1994) Genetics of bacterial bioluminescence. Annu Rev Genet 28:117–139

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Millikan DS, Ruby EG (2004) Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J Bacteriol 186:4315–4325

    Article  PubMed  CAS  Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Nelson EJ, Tunsjo HS, Fidopiastis PM, Sorum H, Ruby EG (2007) A novel lux operon in the cryptically bioluminescent fish pathogen Vibrio salmonicida is associated with virulence. Appl Environ Microbiol 73:1825–1833

    Article  PubMed  CAS  Google Scholar 

  • Peterson C, Moller LB (2000) Invariance of the nucleoside triphosphate pools of Escherichia coli with growth rate. J Biol Chem 275:3931–3935

    Article  Google Scholar 

  • Pooley DT et al (2004) Continuous culture of photobacterium. Biosens Bioelectron 19:1457–1463

    Article  PubMed  CAS  Google Scholar 

  • Rosson RA, Nealson KH (1981) Autoinduction of bacterial bioluminescence in a carbon limited chemostat. Arch Microbiol 129:299–304

    Article  Google Scholar 

  • Ruby EG, Asato LM (1993) Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch Microbiol 159:160–167

    Article  PubMed  CAS  Google Scholar 

  • Ruby EG, Nealson KH (1976) Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica: A model of symbiosis based on bacterial studies. Biol Bull 151:574–586

    Article  PubMed  CAS  Google Scholar 

  • Ruby EG, Nealson KH (1977) Pyruvate production and excretion by the luminous marine bacteria. Appl Environ Microbiol 34:164–169

    PubMed  CAS  Google Scholar 

  • Stabb EV (2005) Shedding light on the bioluminescence “paradox”. ASM News 71:223–229

    Google Scholar 

  • Stabb EV (2006) The Vibrio fischeri-Euprymna scolopes light organ symbiosis. In: Thompson FL, Austin B, Swings J (eds) The biology of vibrios. ASM Press, Washington, D.C., pp 204–218

    Google Scholar 

  • Stabb EV, Butler MS, Adin DM (2004) Correlation between osmolarity and luminescence of symbiotic Vibrio fischeri strain ES114. J Bacteriol 186:2906–2908

    Article  PubMed  CAS  Google Scholar 

  • Stabb EV, Ruby EG (2002) RP4-based plasmids for conjugation between Escherichia coli and members of the Vibrionaceae. Methods Enzymol 358:413–426

    Article  PubMed  CAS  Google Scholar 

  • Stabb EV, Ruby EG (2003) Contribution of pilA to competitive colonization of Euprymna scolopes by Vibrio fischeri. Appl Environ Microbiol 69:820–826

    Article  PubMed  CAS  Google Scholar 

  • Tu S-C, Mager HIX (1995) Biochemistry of bacterial bioluminescence. Photochem Photobiol 62:615–624

    Article  PubMed  CAS  Google Scholar 

  • Visick KG, Ruby EG (1996) Construction and symbiotic competence of a luxA-deletion mutant of Vibrio fischeri. Gene 175:89–94

    Article  PubMed  CAS  Google Scholar 

  • Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG (2000) Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182:4578–4586

    Article  PubMed  CAS  Google Scholar 

  • Walker EL, Bose JL, Stabb EV (2006) Photolyase confers resistance to UV light but does not contribute to the symbiotic benefit of bioluminescence in Vibrio fischeri ES114. Appl Environ Microbiol 72:6600–6606

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Hastings JW (1982) Specificities and properties of three reduced pyridine nucleotide-flavin mononucleiotide reductases coupling to bacterial luciferase. Mol Cell Biochem 44:181–187

    Article  PubMed  CAS  Google Scholar 

  • Wei SL, Young RE (1989) Development of symbiotic bacterial bioluminescence in a nearshore cephalopod, Euprymna scolopes. Mar Biol 103:541–546

    Article  Google Scholar 

  • Weis VM, Small AL, McFall-Ngai MJ (1996) A peroxidase related to the mammalian antimicrobial protein myeloperoxidase in the Euprymna-Vibrio mutualism. Proc Natl Acad Sci USA 93:13683–13688

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky C, Horn V (1981) Rifampicin resistance mutations that alter the efficiency of transcription termination at the tryptophan operon attenuator. J Bacteriol 145:1334–1341

    PubMed  CAS  Google Scholar 

  • Zenno S, Saigo K (1994) Identification of the genes encoding NAD(P) H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis. J Bacteriol 176:3544–3551

    PubMed  CAS  Google Scholar 

  • Ziegler MM, Baldwin TO (1981) Biochemistry of bacterial bioluminescence. In: Current topics in bioenergetics. Academic Press, Inc., Chestnut Hill, pp 65–113

Download references

Acknowledgments

We thank Melissa Butler, Alecia Septer, Deanna Colton, Anne Dunn, Dawn Adin, and Noreen Lyell for technical assistance, and Karen Visick for sharing strains. Genome information was provided by the Vibrio fischeri Genome Project, at http://ergo.integratedgenomics.com/Genomes/VFI, supported by the W. M. Keck Foundation. This work was supported by a CAREER award to EVS from the National Science Foundation (MCB-0347317), by National Institutes of Health grant R01AI50661, and by a STIR grant from the Army Research Office (49549LSII).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric V. Stabb.

Additional information

Communicated by Andreas Brune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bose, J.L., Rosenberg, C.S. & Stabb, E.V. Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch Microbiol 190, 169–183 (2008). https://doi.org/10.1007/s00203-008-0387-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0387-1

Keywords

Navigation