Skip to main content
Log in

Involvement of GlnK, a PII protein, in control of nitrogen fixation and ammonia assimilation in Pseudomonas stutzeri A1501

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The nitrogen-fixing, root-associated strain Pseudomonas stutzeri A1501 carries a single gene encoding a protein from the PII family, designated glnK. The glnK gene is co-transcribed with two distantly related copies of amtB genes encoding putative ammonium channels. Transcription of glnK was decreased in the presence of ammonia and was partly dependent on NtrC and RpoN under nitrogen-limiting conditions. Inactivation of glnK led to a mutant strain devoid of nitrogenase activity, auxotrophic for glutamine and unable to deadenylylate glutamine synthetase, while inactivation of amtB 1 led to a prototrophic and Nif+ mutant strain. RT-PCR analysis showed that nifA transcription was abolished in the glnK mutant, while glnA remained transcribed. Using the yeast two-hybrid system, an interaction between GlnK and the C-terminal domain of NifL was observed, suggesting GlnK-dependent control of NifA activity by NifL. Introduction of a plasmid that expressed nifA from a constitutive promoter restored nitrogen fixation to the glnK mutant, and nitrogenase activity was observed even in the presence of ammonia. GlnK signalling appears to be a key regulatory element in control of ammonia assimilation, of nifA expression and in modulation of NifA activity by NifL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander F, Yakunin P, Hallenbeck PC (2002) AmtB is necessary for NH4 +-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J Bacteriol 184:4081–4088

    Article  CAS  Google Scholar 

  • Allen LN, Hanson RS (1985) Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol 161:955–962

    PubMed  CAS  Google Scholar 

  • Arcondéguy T, Jack R, Merrick M (2001) The PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105

    Article  PubMed  Google Scholar 

  • Arsène F, kaminski pa, Elmerich C (1996) Modulation of NifA activity by PII in Azospirillum brasilense: evidence for a regulatory role of the NifA N-terminal domain. J Bacteriol 178:4830–4838

    PubMed  Google Scholar 

  • Bender RA, Janssen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977) Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol 129:1001–1009

    PubMed  CAS  Google Scholar 

  • Blatny JM, Brautaset T, Winter-Larsen H, Haugan K, Valla S (1997) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on RK2 replicon. Appl Environ Microbiol 63:370–379

    PubMed  CAS  Google Scholar 

  • Bonatto AC, Souza EM, Pedrosa FO, Yates MG, Benelli EM (2005) Effect of T- and C-loop mutations on the Herbaspirillum seropedicae GlnB protein in nitrogen signaling. Res Microbiol 156:634–640

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Liu L, Zhou X, Elmerich C, Li JL (2005) Functional analysis of the GAF domain of NifA in Azospirillum brasilense: effects of Tyr-Phe mutations on NifA and its interaction with GlnB. Mol Genet Genomics 273:415–422

    Article  PubMed  CAS  Google Scholar 

  • Coutts G, Thomas G, Blakey D, Merrick M (2002) Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 21:536–545

    Article  PubMed  CAS  Google Scholar 

  • de Zamaroczy M (1998) Structural homologues PII and Pz of Azospirillum brasilense provide intracellular signaling for selective regulation of various nitrogen-dependent functions. Mol Microbiol 29:449–463

    Article  PubMed  Google Scholar 

  • Desnoues N, Lin M, Guo X, Ma L, Carreño-Lopez R , Elmerich C (2003) Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251–2262

    Article  PubMed  CAS  Google Scholar 

  • He L, Soupène E, Ninfa A, Kustu S (1998) Physiological role for the GlnK protein of enteric bacteria: relief of NifL inhibition under nitrogen-limiting conditions. J Bacteriol 180:6661–6667

    PubMed  CAS  Google Scholar 

  • Holtel A, Merrick M (1989) The Klebsiella pneumoniae PII protein (glnB gene product) is not absolutely required for nitrogen regulation and is not involved in NifL-mediated nif gene regulation. Mol Gen Genet 217:474–480

    Article  PubMed  CAS  Google Scholar 

  • Jack R, De Zamaroczy M, Merrick M (1999) The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. J Bacteriol 181:1156–1162

    PubMed  CAS  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Jiang P, Peliska JA, Ninfa AJ (1998) The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Biochemistry 37:12802–12810

    Article  PubMed  CAS  Google Scholar 

  • Klopperogge K, Grabbe R, Hoppert M, Schmitz RA (2002) Membrane association of Klebsiella pneumoniae NifL is affected by molecular oxygen and combined nitrogen. Arch Microbiol 173:223–234

    Article  CAS  Google Scholar 

  • Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510–547

    Article  PubMed  CAS  Google Scholar 

  • Lin M, Smalla K, Heuer H, van Elsas JD (2000) Effect of an Alcaligenes faecalis inoculant strain on bacterial communities in flooded microcosms planted with rice seedlings. Appl Soil Ecol 15:211–225

    Article  Google Scholar 

  • Little R, Colombo V, Leech A, Dixon R (2002) Direct interaction of the NifL regulatory protein with the GlnK signal transducer enables the Azotobacter vinelandii NifL-NifA regulatory system to respond to conditions replete for nitrogen. J Biol Chem 277:15472–15481

    Article  PubMed  CAS  Google Scholar 

  • Martin DE, Hurek T, Reinhold-Hurek B (2000) Occurrence of three PII-like signal transmitter proteins in the diazotrophic proteobacterium Azoarcus sp.BH72. Mol Microbiol 38:276–288

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Argudo I, Little R, Shearer N, Johnson P, Dixon R (2004) The NifL-NifA system: a multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol 186:601–610

    Article  PubMed  CAS  Google Scholar 

  • Meletzus D, Rudnick P, Doetsch N, Green A, Kennedy C (1998) Characterization of the glnK-amtB operon of Azotobacter vinelandii. J Bacteriol 180:3260–3264

    PubMed  CAS  Google Scholar 

  • Merrick M (2004) Regulation of nitrogen fixation in free-living diazotrophs. In: Klipp BMJPG W, Newton WE (eds) Genetics and regulation of nitrogen fixation in free-living bacteria. Kluwer, Netherlands, pp 197–233

    Google Scholar 

  • Miller JB (1972) Assay for β-galactosidase. In: Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 352–355

  • Pedrosa FO, Elmerich C (2007) Regulation of nitrogen fixation and ammonium assimilation in associative and endophytic nitrogen fixing bacteria. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen fixing bacteria and cyanobacterial associations. Kluwer, The Netherlands, pp 47–71

    Google Scholar 

  • Perlova O, Ureta A, Nordlund S, Meletzus D (2003) Identification of three genes encoding PII-like proteins in Gluconacetobacter diazotrophicus: studies of their role(s) in the control of nitrogen fixation. J Bacteriol 185:5854–5861

    Article  PubMed  CAS  Google Scholar 

  • Rudnick P, Kunz C, Gunatilaka MK, Hines ER, Kennedy C (2002) Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii. J Bacteriol 184:812–820

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Shäfer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puehler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmid pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791

    Article  CAS  Google Scholar 

  • Tang DJ, He YQ, Feng JX, He BR, Jiang BL, Lu GT, Chen B, Tang JL (2005) Xanthomonas campestris pv. Campestris posseses a single glucogenic pathway that is required for virulence. J Bacteriol 187:6231–6237

    Article  PubMed  CAS  Google Scholar 

  • Vermeiren H, Willems A, Schoofs G, de Mot R, Keijers V, Hai W, Vanderleyden J (1999) The rice inoculant strain A15 is a nitrogen-fixing Pseudomonas stutzeri strain. Syst Appl Microbiol 22:215–224

    PubMed  CAS  Google Scholar 

  • Vermeiren H, Keijers V, Vanderleyden J (2002) Isolation and sequence analysis of the glnKamtB1amtB2 gene cluster, encoding a PII homologue and two putative ammonium transporters, from Pseudomonas stutzeri A15. DNA Seq 13:67–74

    PubMed  CAS  Google Scholar 

  • Xie Z, Dou Y, Ping S, Chen M, Wang G, Elmerich C, Lin M (2006) Interaction between NifL and NifA in the nitrogen-fixing Pseudomonas stutzeri A1501. Microbiology 152:3535–3542

    Article  PubMed  CAS  Google Scholar 

  • You CB, Song HX, Wang JP, Lin M, Hai WL (1991) Association of Alcaligenes faecalis with wetland rice. Plant Soil 137:81–85

    Article  Google Scholar 

  • Zhang Y, Pohlmann EL, Ludden PW, Roberts GP (2001) Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. J Bacteriol 183:6159–6168

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Pohlmann EL, Roberts GP (2004) Identification of critical residues in GlnB for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci 101:2782–2787

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Dong-Jie Tang for suggesting to use the primer P18conF and Ms. Jerri Bram for reading the typescript. This work was supported by the Ministry of Science and Technology of China (National Basic Research Program 2001CB108904 and 2007CB707805, National High-Tech Program 2004AA21470 and 2006AA020101), and the National Natural Science Foundation of China (grant No. 30470047 and 30670050). Sheng He thanks College of Life Science and Technology of Guangxi University for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Lin.

Additional information

Communicated by Jack Meeks.

S. He and M. Chen contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Chen, M., Xie, Z. et al. Involvement of GlnK, a PII protein, in control of nitrogen fixation and ammonia assimilation in Pseudomonas stutzeri A1501. Arch Microbiol 190, 1–10 (2008). https://doi.org/10.1007/s00203-008-0354-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0354-x

Keywords

Navigation