Skip to main content
Log in

Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp. nov.

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two strains of trichloroethylene (TCE)-degrading bacteria were isolated from soils at polluted and unpolluted sites. The isolates, strains TE26T and K6, showed co-substrate-independent TCE-degrading activity. TCE degradation was accelerated by preincubation with tetrachloroethylene, cis-dichloroethylene (DCE) and 1,1-DCE. TCE-degrading activities of strains TE26T and K6 were 0.23, 0.24 μmol min−1 g−1 dry cells, respectively. 16S rDNA sequences of strains TE26T and K6 were almost identical (99.7% similarity), and most closely related to Ralstonia basilensis (ATCC17697T) (98.5% similarity). From the results of DNA–DNA hybridizations, strain TE26T was genetically coherent to strain K6 (94 and 88% hybridization), and exhibited lower relatedness to R. basilensis (DSM11853T) (44% and 15%). In addition, because of the differences in chemotaxonomic properties, strain TE26T and strain K6 appear to be distinct from all established species of the Ralstonia group. Based on these results and the proposal of transferring R. basilensis and related species to Wautersia gen. nov., we propose that these strains should be assigned to the genus Wautersia as Wautersia numadzuensis sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DCE:

Dichloroethylene

LB:

Luria-Bertani

OD:

Optical density

PCE:

Tetrachloroethylene

TCE:

Trichloroethylene

References

  • Ayoubi PJ, Harker AR (1998) Whole-cell kinetics of trichloroethylene degradation by phenol hydroxylase in a Ralstonia eutropha JMP134 derivative. Appl Environ Microbiol 64:4353–4356

    CAS  PubMed  Google Scholar 

  • Bouwer EJ, McCarty PL (1983) Transformations of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 45:1286–1294

    CAS  PubMed  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    CAS  PubMed  Google Scholar 

  • Fathepure BZ, Nengu JP, Boyd SA (1987) Anaerobic bacteria that dechlorinate perchloroethene. Appl Environ Microbiol 53:2671–2674

    CAS  PubMed  Google Scholar 

  • Fox BG, Borneman JG, Wackett LP, Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29:6419–6427

    CAS  PubMed  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001a) Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria. Appl Microbiol Biotechnol 55:248–253

    Article  CAS  PubMed  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001b) Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl Environ Microbiol 67:4671–4677

    Article  CAS  PubMed  Google Scholar 

  • Harker AR, Kim Y (1990)Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134. Appl Environ Microbiol 56:1179–1181

    CAS  PubMed  Google Scholar 

  • Heald S, Jenkins RO (1994) Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl Environ Microbiol 60:4634–4637

    CAS  PubMed  Google Scholar 

  • Hino S, Watanabe K, Takahashi N (1998) Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties. Microbiology 144:1765–1772

    CAS  PubMed  Google Scholar 

  • Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    CAS  Google Scholar 

  • Jahng D, Wood TK (1994) Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl Environ Microbiol 60:2473–2482

    CAS  PubMed  Google Scholar 

  • Kersters K, Ley JD (1984) Genus Alcaligenes Castellani and Chalmers 1919. In: Krieg NR (ed) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 367–373

  • Kim Y, Ayoubi P, Harker AR (1996) Constitutive expression of the cloned phenol hydroxylase gene(s) from Alcaligenes eutrophus JMP134 and concomitant trichloroethylene oxidation. Appl Environ Microbiol 62:3227–3233

    CAS  PubMed  Google Scholar 

  • Leahy JG, Byrne AM, Olsen RH (1996) Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl Environ Microbiol 62:825–833

    CAS  PubMed  Google Scholar 

  • Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL, Gilmer PJ (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl Environ Microbiol 54:951–956

    CAS  Google Scholar 

  • Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin DE, White DC (1994) Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl Environ Microbiol 60:542–548

    CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    CAS  Google Scholar 

  • Matin A, Little CD, Fraley CD, Keyhan M (1995) Use of starvation promoters to limit growth and selectively enrich expression of trichloroethylene-and phenol-transforming activity in recombinant Escherichia coli (corrected) [published erratum appears in Appl Environ Microbiol 61(11):4140]. Appl Environ Microbiol 61:3323–3328

    CAS  PubMed  Google Scholar 

  • Maymo-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dechloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65:3108–3113

    CAS  PubMed  Google Scholar 

  • McClay K, Streger SH, Steffan RJ (1995) Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes. Appl Environ Microbiol 61:3479–3481

    CAS  PubMed  Google Scholar 

  • Nakamura K, Ishida H, Iizumi T (2000) Constitutive trichloroethylene degradation led by tac promoter chromosomally integrated upstream of phenol hydroxylase genes of Ralstonia sp. KN1 and its nucleotide sequence analysis. J Biosci Bioeng 89:47–54

    Article  CAS  Google Scholar 

  • Nelson MJK, Montgomery SO, Mahaffey WR, Pritchard PH (1987) Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl Environ Microbiol 53:949–954

    CAS  PubMed  Google Scholar 

  • Noguchi T, Kumagai M, Kuninaka A (1988) Analysis of base composition of sequenced DNA’s by high performance liquid chromatography of their nuclease P1 hydrolysate. Agric Biol Chem 52:2355–2356

    CAS  Google Scholar 

  • Nordlund I, Powlowski J, Shingler V (1990) Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 172:6826–6833

    CAS  PubMed  Google Scholar 

  • Pflugmacher U, Averhoff B, Gottschalk G (1996) Cloning, sequencing, and expression of isopropylbenzene degradation genes from Pseudomonas sp. strain JR1: identification of isopropylbenzene dioxygenase that mediates trichloroethene oxidation. Appl Environ Microbiol 62:3967–3977

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shields MS, Reagin MJ (1992) Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Appl Environ Microbiol 58:3977–3983

    CAS  PubMed  Google Scholar 

  • Steinle P, Stucki G, Stettler R, Hanselmann KW (1998) Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1. Appl Environ Microbiol 64:2566–2571

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Tsien H-C, Brusseau GA, Hanson RS, Wackett LP (1989) Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol 55: 3155–3161

    CAS  PubMed  Google Scholar 

  • Uchiyama H, Nakajima T, Yagi O, Tabuchi T. (1989) Aerobic degradation of trichloroethylene by a new type II methane utilizing bacterium, strain M. Agric Biol Chem 53:2903–2907

    CAS  Google Scholar 

  • Vaneechoutte M, Kampfer P, Baere TD, Falsen E, Verschraegen G (2004) Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 54:317–327

    Article  PubMed  Google Scholar 

  • Wackett LP, Gibson DT (1988) Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl Environ Microbiol 54:1703–1708

    CAS  PubMed  Google Scholar 

  • Wackett LP, Brusseau GA, Householder SR, Hanson RS (1989) Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol 55:2960–2964

    CAS  PubMed  Google Scholar 

  • Wild A, Hermann R, Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7:507–511

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant from Shizuoka Prefecture. We thank Prof. T. Ohmori and Dr H. Nojiri (Tokyo University) for pertinent advice at the beginning of this work, and Prof. A. Hiraishi and Dr H. Futamata (Toyohashi University of Technology) for helpful advice on this work and manuscript, and Dr M. Nishijima (NCIMB Japan) for offering electron micrograph techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Ohishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kageyama, C., Ohta, T., Hiraoka, K. et al. Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp. nov.. Arch Microbiol 183, 56–65 (2005). https://doi.org/10.1007/s00203-004-0746-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0746-5

Keywords

Navigation