Skip to main content
Log in

FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The Escherichia coli yiiP gene encodes an iron transporter, ferrous iron efflux (FieF), which belongs to the cation diffusion facilitator family (CDF). Transcription of fieF correlated with iron concentration; however, expression appeared to be independent of the ferrous iron uptake regulator Fur. Absence of FieF led to decreased growth of E. coli cells in complex growth medium but only if fur was additionally deleted. The presence of EDTA was partially able to relieve this growth deficiency. Expression of fieF in trans rendered the double deletion strain more tolerant to iron. Furthermore, E. coli cells exhibited reduced accumulation of 55Fe when FieF was expressed in trans. FieF catalyzed active efflux of Zn(II) in antiport with protons energized by NADH via the transmembrane pH gradient in everted membrane vesicles. Using the iron-sensitive fluorescent indicator PhenGreen-SK encapsulated in proteoliposomes, transmembrane fluxes of iron cations were measured with purified and reconstituted FieF by fluorescence quenching. This suggests that FieF is an iron and zinc efflux system, which would be the first example of iron detoxification by efflux in any organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CDF:

Cations diffusion facilitator

FieF:

Ferrous ion efflux

References

  • Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912

    Article  CAS  PubMed  Google Scholar 

  • Abdul-Tehrani H, Hudson AJ, Chang YS, Timms AR, Hawkins C, Williams JM, Harrison PM, Guest JR, Andrews SC (1999) Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 181:1415–1428

    CAS  PubMed  Google Scholar 

  • Ambudkar SV, Zlotnick GW, Rosen BP (1984) Calcium efflux from Escherichia coli. Evidence for two systems. J Biol Chem 259:6142–6146

    CAS  PubMed  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Lett 27:215–237

    Article  CAS  Google Scholar 

  • Anton A, Grosse C, Reissmann J, Pribyl T, Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181:6876–6881

    CAS  PubMed  Google Scholar 

  • Anton A, Weltrowski A, Haney CJ, Franke S, Grass G, Rensing C, Nies DH (in press) Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans and Escherichia coli. J Bacteriol

  • Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36:525–557

    CAS  PubMed  Google Scholar 

  • Bloss T, Clemens S, Nies DH (2002) Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 214:783–791

    Article  CAS  PubMed  Google Scholar 

  • Bullen JJ, Rogers HJ, Griffiths E (1978) Role of iron in bacterial infection. Curr Top Microbiol Immunol 80:1–35

    CAS  PubMed  Google Scholar 

  • Chao Y, Fu D (2004a) Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J Biol Chem 279:12043–12050

    Article  CAS  PubMed  Google Scholar 

  • Chao Y, Fu D (2004b) Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J Biol Chem 279:17173–17180

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15:1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  CAS  PubMed  Google Scholar 

  • Eng BH, Guerinot ML, Eide D, Saier MH Jr (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Membr Biol 166:1–7

    Article  CAS  PubMed  Google Scholar 

  • Escolar L, Perez-Martin J, de Lorenzo V (1998) Binding of the Fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol 283:537–547

    Article  CAS  PubMed  Google Scholar 

  • Esposito BP, Epsztejn S, Breuer W, Cabantchik ZI (2002) A review of fluorescence methods for assessing labile iron in cells and biological fluids. Anal Biochem 304:1–18

    Article  CAS  PubMed  Google Scholar 

  • Grass G, Rensing C (2001) Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183:2145–2147

    CAS  PubMed  Google Scholar 

  • Grass G, Fan B, Rosen BP, Franke S, Nies DH, Rensing C (2001a) ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J Bacteriol 183:4664–4667

    Article  CAS  PubMed  Google Scholar 

  • Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG, Rensing C (2001b) NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183:2803–2807

    Article  CAS  PubMed  Google Scholar 

  • Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 184:864–866

    CAS  PubMed  Google Scholar 

  • Grunberg K, Wawer C, Tebo BM, Schuler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582

    Article  CAS  PubMed  Google Scholar 

  • Guffanti AA, Wei Y, Rood SV, Krulwich TA (2002) An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol Microbiol 45:145–153

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307:108–112

    Article  CAS  PubMed  Google Scholar 

  • Hantke K (1984) Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol Gen Genet 197:337–341

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Kirschke CP, Gitschier J (2002) Functional characterization of a novel mammalian zinc transporter, ZnT6. J Biol Chem 277:26389–26395

    Article  CAS  PubMed  Google Scholar 

  • Hubbard JA, Lewandowska KB, Hughes MN, Poole RK (1986) Effects of iron-limitation of Escherichia coli on growth, the respiratory chains and gallium uptake. Arch Microbiol 146:80–86

    CAS  PubMed  Google Scholar 

  • Keyer K, Imlay JA (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A 93:13635–13640

    Article  CAS  PubMed  Google Scholar 

  • Lange H, Kispal G, Lill R (1999) Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J Biol Chem 274:18989–18996

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Grass G, Haney CJ, Fan B, Rosen BP, Anton A, Nies DH, Rensing C (2002) Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiol Lett 215:273–278

    Article  CAS  PubMed  Google Scholar 

  • Li L, Kaplan J (1997) Characterization of two homologous yeast genes that encode mitochondrial iron transporters. J Biol Chem 272:28485–28493

    Article  CAS  PubMed  Google Scholar 

  • Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99:4620–4625

    Article  CAS  PubMed  Google Scholar 

  • McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC (2003) Global iron-dependent gene regulation in Escherichia coli: a new mechanism for iron homeostasis. J Biol Chem 32:29478–29486

    Article  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    CAS  PubMed  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (2004) Essential and toxic effects of elements on microorganisms. In: Anke K, Ihnat M, Stoeppler M (eds) Metals and their compounds in the environment. Wiley, Weinheim, p Part II.1

  • Nunoshiba T, Obata F, Boss AC, Oikawa S, Mori T, Kawanishi S, Yamamoto K (1999) Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli. J Biol Chem 274:34832–34837

    Article  CAS  PubMed  Google Scholar 

  • O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  CAS  PubMed  Google Scholar 

  • Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677

    Article  CAS  PubMed  Google Scholar 

  • Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    Article  CAS  PubMed  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci U S A 98:9995–10000

    Article  CAS  PubMed  Google Scholar 

  • Pojl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47:903–915

    Article  PubMed  Google Scholar 

  • Ratering S, Schnell S (2001) Nitrate-dependent iron(II) oxidation in paddy soil. Environ Microbiol 3:100–109

    Article  CAS  PubMed  Google Scholar 

  • Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213

    Article  CAS  PubMed  Google Scholar 

  • Rowley DA, Halliwell B (1982a) Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts. FEBS Lett 142:39–41

    Article  CAS  PubMed  Google Scholar 

  • Rowley DA, Halliwell B (1982b) Superoxide-dependent formation of hydroxyl radicals in the presence of thiol compounds. FEBS Lett 138:33–36

    Article  CAS  PubMed  Google Scholar 

  • Roy CN, Enns CA (2000) Iron homeostasis: new tales from the crypt. Blood 96:4020–4027

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shingles R, North M, McCarty RE (2002) Ferrous ion transport across chloroplast inner envelope membranes. Plant Physiol 128:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Simpson RJ, Peters TJ (1990) Forms of soluble iron in mouse stomach and duodenal lumen: significance for mucosal uptake. Br J Nutr 63:79–89

    CAS  PubMed  Google Scholar 

  • Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A (1996) A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271:1552–1557

    CAS  PubMed  Google Scholar 

  • Touati D, Jacques M, Tardat B, Bouchard L, Despied S (1995) Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol 177:2305–2314

    CAS  PubMed  Google Scholar 

  • Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC Press, Boca Raton

    Google Scholar 

  • Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA (2000) A signal transduction system that responds to extracellular iron. Cell 103:113–125

    Article  CAS  PubMed  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  PubMed  Google Scholar 

  • Zheng M, Doan B, Schneider TD, Storz G (1999) OxyR and SoxRS regulation of fur. J Bacteriol 181:4639–4643

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants Ni262/4-1 and GR2061/1-1 of the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie to D.H.N. and to G.G., and by hatch project 136713 and NIEHS grant ESO4940 with funds from EPA to C.R. We thank Grit Schleuder for skilful technical assistance. Thanks are due Jerry Kaplan and Dennis R. Winge for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Grass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grass, G., Otto, M., Fricke, B. et al. FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183, 9–18 (2005). https://doi.org/10.1007/s00203-004-0739-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0739-4

Keywords

Navigation