Skip to main content
Log in

The putrescine analogue 1-aminooxy-3-aminopropane perturbs polyamine metabolism in the phytopathogenic fungus Sclerotinia sclerotiorum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The effects of the putrescine analogue 1-aminooxy-3-aminopropane on fungal polyamine metabolism were evaluated using Sclerotinia sclerotiorum as an experimental model. The compound inhibited ornithine decarboxylase, spermidine synthase, and S -adenosyl-methionine decarboxylase in mycelial extracts. Addition of 1-aminooxy-3-aminopropane at 1 mM to the culture medium did not reduce mycelial growth and caused a 29% decrease in free spermidine and a two-fold increase in free spermine. When added 4.5 h before the determination of ornithine decarboxylase, 1-aminooxy-3-aminopropane reduced in vivo activity of this enzyme by 40–50%. When added 48 h before the determination, 1-aminooxy-3-aminopropane at 0.01 and 0.1 mM caused a slight increase of in vivo ornithine decarboxylase activity, while it had no effect at 1 mM. Comparison of the action of 1-aminooxy-3-aminopropane with that of other inhibitors of polyamine biosynthesis suggested that its effects on in vivo ornithine decarboxylase activity resulted from a balance between direct inhibition of enzyme activity and indirect stimulation of enzyme synthesis and/or activity mediated by the decrease in spermidine levels, which in turn was due to inhibition of spermidine synthase and S -adenosyl-methionine decarboxylase. The potential of 1-aminooxy-3-aminopropane as a tool for studies on fungal polyamine metabolism and for the control of plant diseases of fungal origin is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–E.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

AdoMetDC :

S-Adenosyl-methionine decarboxylase

DFMO :

α-Difluoromethylornithine

MGBG :

Methylglyoxal bis-[guanyl hydrazone]

ODC :

Ornithine decarboxylase

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Murakami Y, Matsufuji S (2001) Antizyme regulates the degradation of ornithine decarboxylase in fission yeast Schizosaccharomyces pombe. Study in the spe2 knockout strains. J Biol Chem 24:21235–21241

    Article  Google Scholar 

  • DiGangi JJ, Seyfzadeh M, Davis RH (1987) Ornithine decarboxylase from Neurospora crassa: purification, characterization and regulation by inactivation. J Biol Chem 262:7889–7893

    CAS  PubMed  Google Scholar 

  • Gupta R, Hamasaki-Katagiri N, Tabor CW, Tabor H (2001). Effect of spermidine on the in vivo degradation of ornithine decarboxylase in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 98:10620–10623

    Article  CAS  PubMed  Google Scholar 

  • Havis ND, Walters DR, Robins DJ (1997) The fungicidal diamine (E)-N,N,N′,N′-tetraethyl-1,4-diaminobut-2-ene (E-TED) increases spermine concentration in the late blight fungus Phytophtora infestans. Lett Appl Microbiol 25:229–232

    CAS  Google Scholar 

  • Hyvönen T, Alakuijala L, Andersson L, Khomutov AR, Khomutov RM, Eloranta TO (1988) 1-Aminooxy-3-aminopropane reversibly prevents the proliferation of cultured baby hamster kidney cells by interfering with polyamine synthesis. J Biol Chem 263:11138–11144

    PubMed  Google Scholar 

  • Igarashi K, Kashigawi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Bioph Res Commun 271:559–564

    Article  CAS  Google Scholar 

  • Igarashi K, Sakamoto I, Goto N, Kashiwagi K, Honma R, Hirose S (1982) Interaction between polyamines and nucleic acids or phospholipids. Arch Biochem Biophys 219:438–443

    CAS  PubMed  Google Scholar 

  • Khomutov RM, Denisova GF, Khomutov AR, Belostotskaya KM, Shlosmann RB, Artamonova EY (1985a) Aminooxypropylamine as an effective inhibitor of ornithine decarboxylase in vitro and in vivo. Bioorg Chem 11:1574–1576

    CAS  Google Scholar 

  • Khomutov RM, Hyvönen T, Karvonen, Kauppinen E L, Paalanen T, Paulin L, Eloranta T, Pajula RL, Andersson LC, Pösö H (1985b) 1-Aminooxy-3-aminopropane, a new and potent inhibitor of polyamine biosynthesis that inhibits ornithine decarboxylase, S -adenosylmethionine decarboxylase and spermidine synthase. Biochem Bioph Res Commun 130:596–602

    CAS  Google Scholar 

  • Khomutov AR, Dzavakhia VG, Voinova TM, Ermolinsky BS, Khomutov RM (1989) Aminooxy analogue of putrescine inhibits polyketide biosynthetic pathway of natural products. Bioorg Chem 15:706–709

    CAS  Google Scholar 

  • Khurana N, Saxena RK, Gupta R, Rajam MV (1996) Polyamines as modulators of microcycle conidiation in Aspergillus flavus. Microbiology 142:517–523

    CAS  PubMed  Google Scholar 

  • Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60

    CAS  PubMed  Google Scholar 

  • McCann PP, Pegg AE, Sjordesma A (1987) Inhibition of polyamine biosynthesis: biological significance and basis for new therapies. Academic, New York

    Google Scholar 

  • Milovic V, Turchanowa L, Khomutov AR, Khomutov RM, Caspary WF, Stein J (2001) Hydroxylamine-containing inhibitors of polyamine biosynthesis and impairment of colon cancer cell growth. Biochem Pharmacol 61:199–206

    Article  PubMed  Google Scholar 

  • Mitchell JLA, Mahan DW, McCann PP, Qasba P (1985) Dicyclohexylamine effects on HTC cell polyamine content and ornithine decarboxylase activity. Biochim Biophys Acta 840:309–316

    Article  CAS  PubMed  Google Scholar 

  • Paulin L (1986) The effects of 1-aminooxy-3-aminopropane and S -(5'-deoxy-5'-adenosyl)methylthioethylhydroxylamine on ornithine decarboxylase and S -adenosyl-L-methionine decarboxylase from Escherichia coli. FEBS Lett 202:323–326

    Article  CAS  PubMed  Google Scholar 

  • Persson L, Khomutov AR, Khomutov RM (1989) Feedback regulation of S -adenosylmethionine decarboxylase synthesis. Biochem J 257:929–931

    CAS  PubMed  Google Scholar 

  • Pieckenstain FL, Gárriz A, Chornomaz EM, Sánchez DH, Ruiz OA (2001) The effect of polyamine biosynthesis inhibition on growth and differentiation of the phytopathogenic fungus Sclerotinia sclerotiorum. Anton Leeuw Int J Gen & Mol Microbiol 80:245–253

    Google Scholar 

  • Rajam MV, Galston AW (1985) The effects of some polyamine biosynthetic inhibitors on growth and morphology of phytopathogenic fungi. Plant Cell Physiol 26:683–691

    CAS  PubMed  Google Scholar 

  • Ruiz-Herrera J (1994) Polyamines, DNA methylation and fungal differentiation. Crit Rev Microbiol 20:143–150

    CAS  PubMed  Google Scholar 

  • Shapira R, Altman A, Henis Y, Chet I (1989) Polyamines and ornithine decarboxylase activity during growth and differentiation in Sclerotium rolfsii. J Gen Microbiol 135:1361–1367

    CAS  Google Scholar 

  • Smith TA (1985) Polyamines. Annu Rev Plant Physiol 36:117–143

    CAS  Google Scholar 

  • Smith TA, Barker JHA, Jung M (1990) Effect of enzyme activated inhibitors on ornithine decarboxylase and growth of Botrytis cinerea. Phytochemistry 29:1759–1762

    Article  CAS  Google Scholar 

  • Stevens L, Winther MD (1979). Spermine, spermidine and putrescine in fungal development. Adv Microb Physiol 19:63–148

    CAS  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984). Polyamines. Annu Rev Biochem 53:749–790

    PubMed  Google Scholar 

  • Walters DR (1995) Inhibition of polyamine biosynthesis in fungi. Mycol Res 2:129–139

    Google Scholar 

  • Walters DR, Mackintosh CA (1997) Control of plant disease by perturbation of fungal polyamine metabolism. Physiol Plant 100:689–695

    Article  CAS  Google Scholar 

  • Walters DR, Robins DJ (1994) Control of fungal plant diseases using putrescine analogues. Biochem Soc Trans 22:390

    Google Scholar 

  • West HM, Walters DR (1988) The effects of polyamine biosynthesis inhibitors on infection of Hordeum vulgare L. by Erysiphe graminis f. sp. hordei Marchal. New Phytol 110:193–200

    CAS  Google Scholar 

  • West HM, Walters DR (1989) Effects of polyamine biosynthesis inhibitors on growth of Pyrenophora teres, Gaeumannomyces graminis , Fusarium culmorum and Septoria nodorum in vitro. Mycol Res 2:453–457

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Third World Academy of Sciences (TWAS) and Agencia Española de Cooperación Internacional (AECI). AG, MCD and FLP are fellows of Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Universidad Nacional de General San Martín (UNSAM) and Fundación Consejo Regional de la Producción (COREPRO) respectively. OAR is a member of the research career from CONICET. We wish to thank Drs. A.F. Tiburcio and T. Altabella (University of Barcelona, Spain) for valuable comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar A. Ruiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gárriz, A., Dalmasso, M.C., Pieckenstain, F.L. et al. The putrescine analogue 1-aminooxy-3-aminopropane perturbs polyamine metabolism in the phytopathogenic fungus Sclerotinia sclerotiorum . Arch Microbiol 180, 169–175 (2003). https://doi.org/10.1007/s00203-003-0572-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0572-1

Keywords

Navigation