Skip to main content
Log in

Stability analysis of single-machine infinite bus system with renewable energy sources using sine cosine chimp optimization

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The process of incorporating renewable energy sources, such photovoltaics and wind power, into the current power system has a significant effect on the power grid's stability properties. As these variable energy sources fluctuate with changes in weather conditions, ensuring the stability and reliability of the grid becomes a complex challenge. Consequently, there is a growing need for the development and application of appropriate analytical methods to address these evolving dynamics. This research work explores this issue by focusing on the investigation of a grid-connected microgrid. This microgrid incorporates solar photovoltaic and wind energy sources in addition to a synchronous generator. To improve the stability and performance of the system, a governor and power system stabilizer are used. The study applies a novel control system known as µ12/tilted integral fractional derivative with filter (µ12/TIFDN) for low-frequency oscillations within the single-machine infinite bus system. To optimize controller parameters necessary for effective operation, the research employs the sine cosine adapted chimp optimization algorithm. The resilience and robustness of the power system are evaluated and compared with conventional controllers, such as proportional integral, lead-lag, and fractional lead-lag power system stabilizer approaches, through thorough simulation and evaluation using MATLAB. Furthermore, the proposed controller approach exhibits superior performance characteristics, specifically with a reduced settling time of 12 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability statements

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

MG:

Microgrid

PSS:

Power System Stabilizer

LFO:

Low-Frequency Oscillation

SCaChOA:

Sine Cosine adapted Chimp Optimization Algorithm

SG:

Synchronous Generators

PI:

Proportional Integral

FLL-PSS:

Fractional Lead-Lag PSS

JGC:

Jacobian Gain Control

MPC:

Model-Predictive Control

ESO:

Extended State Observer

M-DTA:

Mode-Based Damping Torque Analysis

STATCOM:

Static Compensator

TDFC:

Time Delayed Feedback Control

PSO:

Particle Swarm Optimization

GA:

Genetic Algorithm

EMF:

Electromotive Force

TID:

Tilt Integral Derivative

FO:

Fractional Order

ChoA:

Chimp Optimization Algorithm

LL-PSS:

Lead Lag PSS

SCA:

Sine Cosine Algorithm

RDO-SMC:

Robust disturbance observer based sliding mode controller

ANFIS:

Adaptive Neuro-Fuzzy Inference System

MFO:

Moth Flame Optimization

U:

Unoptimized case

\(Z_{{\text{T}}} ,Z_{{{\text{Tb}}}}\) :

Impedances at the terminal and infinite bus system

\(jX_{e}\) :

Reactance

\(I_{{\text{d}}}\) :

Diode current

\(I_{{{\text{sc}}}}\) :

Short-circuit current

\(q\) :

Charge

\(k\) :

Boltzmann constant

\(A\) :

Ideality factor

\(\omega_{{\text{t}}}\) :

Turbine mechanical speed

\(H_{{\text{g}}}\) :

Inertia of generator

\(\theta_{{{\text{tw}}}}\) :

Torsional angle of the shaft

\(k_{{{\text{sh}}}}\) :

Shaft coefficient

\(T_{{\text{e}}}\) :

Electrical torque

\(\omega_{{{\text{base}}}}\) :

Base angular velocity

\(i_{fd}\) :

Changes in the direct current

\(i_{dg}\) :

D-axis current

\(i_{kd}\) :

Subtransient current in d-axis

\(r_{fd}\) :

Resistance associated with the d-axis of the generator

\(X_{d}\) :

SG d-axis synchronous reactance

\(X_{akd}\) :

SG d-axis subtransient reactance

\(\delta_{{{\text{inj}}}}\) :

Injected phase angle

\(r_{{\text{a}}}\) :

Armature resistance

\(X_{{\text{q}}}\) :

Quadrature(q)-axis reactance

\(X_{akq}\) :

Generator subtransient reactance in q-axis

\(X_{fkd}\) :

Subtransient reactance in d-axis

\(r_{kd}\) :

Rotor resistance of d-axis

\(i_{qg}\) :

q-Axis current

\(r_{kq}\) :

Resistance associated with the q-axis subtransient

\(M\) :

Mechanical torque

\(V_{{\text{t}}}\) :

Generator terminal voltage

\(T_{A}\) :

Time constant of the system

\(K_{A}\) :

Proportional constant for the AVR

\(r(t)\) :

Reference signal

\(e(t)\) :

Error signal

\(G\) :

Controller transfer function

\(K_{{\text{t}}}\) :

Tilt controller parameter

\(K_{{\text{d}}}\) :

Derivative controller parameter

\(s^{1/n}\) :

Transfer function component with an exponent ‘n

\(\mu 1\) :

First exponent in the controller transfer function

\(N\) :

Population of chimp

\(m,c,f\) :

Group strategy parameters

\(X\) :

Vector

\(\min\) :

Minimize

\(\Delta P_{e}\) :

Deviations in real power

\(P_{\max }\) :

Peak power

\(V_{\max }\) :

Voltage at peak power

\(T_{{\text{g}}}\) :

Generator torque

\(T_{{\text{E}}}\) :

Exciter torque

\(P_{{{\text{WG}}}} ,P_{{\text{G}}} ,P_{{\text{V}}}\) :

Wind, generator, solar generated power

\(X_{{\text{b}}}\) :

Rated (Base) operating frequency

\(H\) :

Moment of inertia

\(KA\) :

Constant in Exciter

\(R\,,\,X\) :

Line resistance and reactance

\(i_{{\text{L}}} ,i_{{{\text{Line}}}}\) :

Current in the transmission line

\(f_{{\text{b}}}^{t} \left( {g_{s} } \right)\) :

Beta PDFs

\(\alpha \,{\text{and}}\,\beta\) :

Beta parameters for every segment

\(\sigma\) :

Standard deviation

\(P_{{{\text{PV}},s}}^{t}\) :

Output power of PV at time instant \(t\) for state \(s\)

\(V_{{{\text{mpp}}}} \,\,{\text{and}}\,\,I_{{{\text{mpp}}}}\) :

Voltage and current at maximum power point

\(I_{{{\text{sc}}}}\) :

Short-circuit current

\(T_{{{\text{cell}},s}}^{t}\) :

Temperature of the cell

\(N_{{{\text{OT}}}}\) :

Nominal operating cell temperature

\(K_{{\text{v}}}\) :

Voltage temperature

\(c\) :

Rayleigh scale parameter

\({\text{prob}}_{\upsilon ,i}^{t}\) :

Probability occurrence state \(i\) for time instant \(t\)

\(s_{{{\text{co}}}}\) :

Cut-out wind speed

\(s_{{{\text{av}},w,t}}\) :

Average wind speed

\(E_{fd0}\) :

Generator field voltage

\(V_{{\text{t}}}\) :

Terminal voltage

SPV:

Solar Photovoltaic

µ12/TIFDN:

µ12/Tilted Integral Fractional Derivative with Filter

SMIB:

Single-Machine Infinite Bus

RES:

Renewable Energy Sources

FOC:

Fractional Order Controllers

LL:

Lead-Lag

SVC:

Static Var Compensator

JF:

Jacobian Functions

DMDC:

Dynamic Mode Decomposition with Control

aDPR:

Adaptive Dynamic Power Reduction

QAGTO:

Quantum Artificial Gorilla Troops Optimizer

POD-P:

Power Oscillation Damping Power

WADC:

Wide-Area Damping Controller

FFA:

Farmland Fertility Algorithm

PCC:

Point of Common Coupling

AVR:

Automatic Voltage Regulator

FOPID:

Fractional Order Proportional Integral Derivative

PID:

Proportional Integral Derivative

PI-PSS:

Proportional Integral PSS

DE:

Differential Evolution

PDF:

Probability Density Function

AGC:

Automatic Generation Control

FOBELBIC:

FO Brain Emotional Learning Based Intelligent Controller

EP:

Evolutionary Programming

\(V_{{{\text{ref}}}}\) :

Reference voltage

\(R_{e}\) :

Resistance at the terminal side

\(X_{{\text{t}}}\) :

Transformer with its own reactance

\(n_{p}\) :

Ideality factor

\(I_{{\text{r}}}\) :

Diode saturation current in reverse direction

\(V_{{\text{d}}}\) :

Voltage across diode

\(\theta\) :

Temperature

\(n_{{\text{s}}}\) :

Number of series connected solar cells

\(\omega_{{\text{r}}}\) :

Mechanical speed of rotor

\(H_{{\text{t}}}\) :

Inertia of turbine

\(C_{{{\text{sh}}}}\) :

Damping coefficient

\(T_{{\text{m}}}\) :

Mechanical torque

\({\text{d}}/{\text{d}}t\) :

Rate of change in time (t)

\(X_{ffd}\) :

SG direct(d)-axis transient reactance

\(X_{afd}\) :

Synchronous reactance in d-axis

\(X_{fkd}\) :

Subtransient reactance in q-axis

\(\omega \,_{0}\) :

Synchronous angular velocity

\(E\) :

Generated EMF

\(X_{1}\) :

Transient reactance associated with the SG

\(V_{{{\text{inj}}}}\) :

Injected voltage

\(R_{1}\) :

Sum of rotor resistance

\(\omega_{g}\) :

Synchronous angular velocity

\(i_{qg}\) :

Generator q-axis current

\(i_{kq}\) :

q-Axis subtransient current

\(X_{kkd}\) :

SG d-axis subtransient short-circuit reactance

\(X_{{\text{t}}}\) :

Transient reactance associated with the SG

\(X_{kkq}\) :

SG q-axis subtransient short-circuit reactance

\(\delta_{g}\) :

Rotor angle

\(T_{{\text{m}}}\) :

Mechanical torque generated by the generator

\(V_{{{\text{ref}}}}\) :

Predetermined reference value

\(E\) :

Voltage error

\(V_{{{\text{ref}}}}\) :

Reference set value

\(u(t)\) :

Controlled input

\(y(t)\) :

System output

\(N\) :

Constant used in the transfer function

\(K_{{\text{i}}}\) :

Integral controller parameter

\(K_{{{\text{dd}}}}\) :

Second derivative controller parameter

\(s\) :

Laplace variable

\(\mu 2\) :

Second exponent in the controller transfer function

\(t\) :

Predefined number of iterations

\(a,d\) :

Chimp acceleration and direction

ITSE:

Integral of time multiplied by the squared error

\(\Delta \omega_{e}\) :

Deviations in angular frequency

\(V_{{{\text{oc}}}}\) :

Open circuit voltage

\(I_{\max }\) :

Current at maximum range

\(I_{{{\text{sc}}}}\) :

Short-circuit current

\(T_{{\text{t}}}\) :

Turbine torque

\(V_{{\text{b}}}\) :

Base voltage

\(G,B\) :

Load conductance and susceptance in the system

\(T_{d0}{\prime}\) :

Field open circuit time constant

\(D\) :

Damping factor

\(TA\) :

Voltage regulator time constant

\(j\) :

Imaginary part

\(V_{{{\text{pcc}}}}\) :

Voltage in the PCC

\(g_{s}\) :

PV irradiation

\(\mu\) :

Mean

\(g_{s1} \;{\text{and}}\;g_{s2}\) :

PV irradiation limits

\(N\) :

PV modules count

\(V_{{{\text{cell}},s}}^{t} \,\,{\text{and}}\,\,I_{{{\text{cell}},s}}^{t}\) :

Cell voltage and current

\(K_{i}\) :

Current temperature

\(T_{{\text{A}}}\) :

Ambient temperature

\(V_{{{\text{OC}}}}\) :

Open circuit voltage

\(\upsilon\) :

Wind speed

\(\upsilon_{w1} \;{\text{and}}\;\upsilon_{w2}\) :

Wind speed limit

\(s_{{{\text{ci}}}}\) :

Cut-in wind speed

\(s_{{\text{r}}}\) :

Rated wind speed

\(P_{{\text{r}}}\) :

WT rated power

\(X_{d}^{\prime }\) :

Transient reactance

References

  1. Chabhadiya K, Ranjan Srivastava R, Pathak P (2020) Growth projections against set-target of renewable energy and resultant impact on emissions reduction in India. Environ Eng Res 26:200083

    Article  Google Scholar 

  2. Smith C, Mouli-Castillo J, van der Horst D, Haszeldine S, Lane M (2022) Towards a 100% hydrogen domestic gas network: Regulatory and commercial barriers to the first demonstrator project in the United Kingdom. Int J Hydrogen Energy 47:23071–23083

    Article  Google Scholar 

  3. Batool K, Zhao Z-Y, Irfan M, Ullah S, Işik C (2023) Assessing the competitiveness of Indian solar power industry using the extended five forces model: a green innovation perspective. Environ Sci Pollut Res 30:82045–82067

    Article  Google Scholar 

  4. Kazmerski LL (2022) Innovation in solar technology: toward a 100% renewable electricity future. Innov Renew Energy:3–12

  5. Kumar P, Pal N, Sharma H (2021) Techno-economic analysis of Solar Photo-Voltaic/diesel generator hybrid system using different energy storage technologies for isolated islands of India. J Energy Storage 41:102965

    Article  Google Scholar 

  6. Bridge G, Bulkeley H, Langley P, van Veelen B (2019) Pluralizing and problematizing Carbon Finance. Prog Hum Geogr 44:724–742

    Article  Google Scholar 

  7. Charles Rajesh Kumar J, Majid M (2023) Advances and development of wind–solar hybrid renewable energy technologies for Energy Transition and Sustainable Future in India. Energy Environ. https://doi.org/10.1177/0958305x231152481

    Article  Google Scholar 

  8. Liu J, Golpira H, Bevrani H, Ise T (2021) Grid integration evaluation of virtual synchronous generators using a disturbance-oriented unified modeling approach. IEEE Trans Power Syst 36:4660–4671

    Article  Google Scholar 

  9. Sun C, Ali SQ, Joos G, Bouffard F (2022) Design of hybrid-storage-based virtual synchronous machine with energy recovery control considering energy consumed in inertial and damping support. IEEE Trans Power Electr 37:2648–2666

    Article  Google Scholar 

  10. Huang L, Xin H, Wang Z (2019) Damping low-frequency oscillations through VSC-HVDC stations operated as virtual synchronous machines. IEEE Trans Power Electron 34:5803–5818

    Article  Google Scholar 

  11. Li M, Huang W, Tai N, Yang L, Duan D, Ma Z (2020) A dual-adaptivity inertia control strategy for virtual synchronous generator. IEEE Trans Power Syst 35:594–604

    Article  Google Scholar 

  12. Luo J, Bu S, Chung CY (2021) Design and comparison of auxiliary resonance controllers for mitigating modal resonance of power systems integrated with wind generation. IEEE Trans Power Syst 36:3372–3383

    Article  Google Scholar 

  13. Rüeger C, Dobrowolski J, Korba P, Sevilla FR (2021) Analysis of grid events influenced by different levels of renewable integration on extra-large Power Systems. Adv Sci Technol Eng Syst J 6:43–52

    Article  Google Scholar 

  14. Prakash A, Moursi MS, Parida SK, Kumar K, El-Saadany EF (2023) Damping of inter-area oscillations with frequency regulation in power systems considering high penetration of renewable energy sources. IEEE Trans Ind Appl:1–16

  15. Wang Z, Chen Y, Li X, Xu Y, Luo C, Li Q, He Y (2023) Active power oscillation suppression based on decentralized transient damping control for parallel virtual synchronous generators. IEEE Trans Smart Grid 14:2582–2592

    Article  Google Scholar 

  16. Xiong L, Zhuo F, Wang F, Liu X, Chen Y, Zhu M, Yi H (2016) Static synchronous generator model: a new perspective to investigate dynamic characteristics and stability issues of grid-tied PWM Inverter. IEEE Trans Power Electr 31:6264–6280

    Article  Google Scholar 

  17. Aderibole A, Zeineldin HH, Al Hosani M (2019) A critical assessment of oscillatory modes in multi-microgrids comprising of synchronous and inverter-based distributed generation. IEEE Trans Smart Grid 10:3320–3330

    Article  Google Scholar 

  18. Mohammadi R, Mehdizadeh A, Kalantari N (2017) Applying TID-PSS to enhance dynamic stability of multi-machine power systems. Trans Electr Electron Mater 18:287–297

    Google Scholar 

  19. Topno PN, Chanana S (2016) Load frequency control of a two-area multi-source power system using a tilt integral derivative controller. J Vib Control 24:110–125

    Article  MathSciNet  Google Scholar 

  20. Balakrishnan P, Gopinath S (2023) A hybrid approach for enhancing the dynamic stability in power system. Int J Electr:1–31

  21. Keskes S, Salleem S, Chrifi Alaoui L, Ben Ali Kammoun M (2021) Nonlinear coordinated passivation control of single machine infinite bus power system with static VAR compensator. J Mod Power Syst Clean Energy 9:1557–1565

    Article  Google Scholar 

  22. Du W, Dong W, Wang Y, Wang H (2021) A method to design power system stabilizers in a multi-machine power system based on single-machine infinite-bus system model. IEEE Trans Power Syst 36:3475–3486

    Article  Google Scholar 

  23. Kim J, Kim S, Park JH (2023) A novel control strategy to improve stability and performance of a synchronous generator using jacobian gain control. IEEE Trans Power Syst 38:302–315

    Article  Google Scholar 

  24. Han W, Stanković AM (2023) Model-predictive control design for power system oscillation damping via excitation: a data-driven approach. IEEE Trans Power Syst 38:1176–1188

    Article  Google Scholar 

  25. Konstantinopoulos S, Chow JH (2023) Active power control of DFIG wind turbines for Transient Stability Enhancement. IEEE Open Access J Power Energy 10:208–221

    Article  Google Scholar 

  26. Bi J, Guo Q, Zhao B, Song R, Sun H (2020) Mode-based damping Torque Analysis Method in power system low-frequency oscillations. CSEE J Power Energy Syst. https://doi.org/10.17775/cseejpes.2020.00990

    Article  Google Scholar 

  27. El-Dabah MA, Hassan MH, Kamel S, Zawbaa HM (2022) Robust parameters tuning of different power system stabilizers using a quantum artificial Gorilla Troops optimizer. IEEE Access 10:82560–82579

    Article  Google Scholar 

  28. Rodriguez-Amenedo JL, Gomez SA (2021) Damping low-frequency oscillations in power systems using grid-forming converters. IEEE Access 9:158984–158997

    Article  Google Scholar 

  29. Kumar K, Prakash A, Singh P, Parida SK (2023) Large-scale solar PV converter based robust wide-area damping controller for Critical Low Frequency Oscillations in power systems. IEEE Trans Industry Appl:1–12

  30. Sabo A, Wahab NI, Othman ML, Jaffar MZ, Acikgoz H, Nafisi H, Shahinzadeh H (2021) Artificial intelligence-based power system stabilizers for frequency stability enhancement in Multi-Machine Power Systems. IEEE Access 9:166095–166116

    Article  Google Scholar 

  31. Darvish Falehi A (2020) Optimal robust disturbance observer based sliding mode controller using multi-objective grasshopper optimization algorithm to enhance power system stability. J Ambient Intell Hum Comput 11(11):5045–5063

    Article  Google Scholar 

  32. Falehi AD (2018) Optimal design of fractional order ANFIS-PSS based on NSGA-II aimed at mitigation of DG-connection transient impacts. InProc Rom Acad Ser A 19(3):473–481

    MathSciNet  Google Scholar 

  33. Darvish Falehi A (2022) Robust and intelligent type-2 fuzzy fractional-order controller-based automatic generation control to enhance the damping performance of multi-machine power systems. IETE J Res 68(4):2548–2559

    Article  Google Scholar 

  34. Darvish Falehi A (2019) Optimal fractional order BELBIC to ameliorate small signal stability of interconnected hybrid power system. Environ Prog Sustain Energy 38(5):13208

    Article  Google Scholar 

  35. Akbari MA, Aghaei J, Barani M, Savaghebi M, Shafie-Khah M, Guerrero JM, Catalao JP (2017) New metrics for evaluating technical benefits and risks of DGs increasing penetration. IEEE Trans Smart Grid 8(6):2890–2902

    Article  Google Scholar 

  36. Ali A, Mahmoud K, Raisz D, Lehtonen M (2020) Probabilistic approach for hosting high PV penetration in distribution systems via optimal oversized inverter with watt-var functions. IEEE Syst J 15(1):684–693

    Article  Google Scholar 

  37. Zubo RH, Mokryani G, Abd-Alhameed R (2018) Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environment. Appl Energy 220:713–722

    Article  Google Scholar 

  38. Atwa YM, El-Saadany EF, Salama MM, Seethapathy R (2009) Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans Power Syst 25(1):360–370

    Article  Google Scholar 

  39. Soroudi A (2012) Possibilistic-scenario model for DG impact assessment on distribution networks in an uncertain environment. IEEE Trans Power Syst 27(3):1283–1293

    Article  Google Scholar 

  40. Kaur M, Kaur R, Singh N, Dhiman G (2021) Schoa: A newly fusion of sine and cosine with chimp optimization algorithm for HLS of Datapaths in digital filters and engineering applications. Eng Comput 38:975–1003

    Article  Google Scholar 

  41. Saadatmand M, Gharehpetian GB, Siano P, Alhelou HH (2021) PMU-based FOPID controller of large-scale wind-PV farms for LFO damping in Smart Grid. IEEE Access 9:94953–94969

    Article  Google Scholar 

  42. Chaib L, Choucha A, Arif S (2017) Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic bat algorithm. Ain Shams Eng J 8:113–125

    Article  Google Scholar 

  43. Hindocha BR, Sheth CV (2024) Improving the stability and damping of low-frequency oscillations in grid-connected microgrids with synchronous generators. Electr Eng:1–21.

Download references

Acknowledgements

None.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the work.

Corresponding author

Correspondence to N. Mohana Sundaram.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed consent

For this type of analysis, formal consent is not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Parameter specifications are shown in Table

Table 8 Parameter specifications

8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohana Sundaram, N., Thottungal, R. Stability analysis of single-machine infinite bus system with renewable energy sources using sine cosine chimp optimization. Electr Eng (2024). https://doi.org/10.1007/s00202-024-02450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00202-024-02450-4

Keywords

Navigation