Skip to main content
Log in

Interval harmonic power flow for microgrids: an approach using the second-order Taylor series

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The analysis of harmonic distortions and their propagation in electric power systems is crucial for power quality assessment. Harmonic power flow (HPF) is a widely used technique for this purpose. However, most existing research on HPF focuses on deterministic algorithms, and only a few studies have considered uncertainties associated with harmonic sources connected to microgrids. Due to the lack of recent approaches for evaluating the impact of uncertain data on HPF results, this paper proposes a new methodology for calculating harmonic voltages and distortions in microgrids by assuming uncertain parameters for both loads and harmonic sources. To obtain interval results for harmonic voltages, the load flow equations are expanded up to the second-order terms using Taylor series, considering all partial derivatives of the system variables with respect to a percentage uncertainty value. The proposed method is evaluated using simulations on a 33-bus distribution system, considering the microgrid in both islanded mode and connected to a main power substation. As demonstrated, the interval results are similar to those obtained from Monte Carlo simulations, proving the efficiency of the proposed method with robust solution and reduced computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Eid BM, Guerrero JM, Abusorrah AM, Islam MR (2021) A new voltage regulation strategy using developed power sharing techniques for solar photovoltaic generation-based microgrids. Electr Eng 103(6):3023–3031

    Article  Google Scholar 

  2. Alqunun K, Guesmi T, Farah A (2020) Load shedding optimization for economic operation cost in a microgrid. Electr Eng 102(2):779–791

    Article  Google Scholar 

  3. La Gatta PO, Passos Filho JA, Pereira JLR (2019) “Tools for handling steady-state under-frequency regulation in isolated microgrids,’’. IET Renew Power Gener 13(4):609–617

    Article  Google Scholar 

  4. Sahoo SK, Sinha AK, Kishore N (2017) Control techniques in ac, dc, and hybrid ac-dc microgrid: a review. IEEE J Emerg Sel Top Power Electr 6(2):738–759

    Article  Google Scholar 

  5. Lasseter RH, Paigi P (2004) “Microgrid: A conceptual solution,” in 2004 IEEE 35th annual power electronics specialists conference (IEEE Cat. No. 04CH37551), vol. 6, pp. 4285–4290, IEEE

  6. Miveh MR, Rahmat MF, Ghadimi AA, Mustafa MW (2015) Power quality improvement in autonomous microgrids using multi-functional voltage source inverters: a comprehensive review. J Power Electr 15(4):1054–1065

    Article  Google Scholar 

  7. Wang H, Yan Z, Xu X, He K (2020) Probabilistic power flow analysis of microgrid with renewable energy. Int J Electr Power Energy Syst 114:105393

    Article  Google Scholar 

  8. de Sousa LL, Melo ID (2022) Interval power flow analysis of microgrids with uncertainties: an approach using the second-order taylor series expansion. Electr Eng 104(3):1623–1633

    Article  Google Scholar 

  9. Melo ID, Mingorança JS (2022) Interval current injection method for harmonic analysis in distribution systems: An approach using the krawczyk operator. Electr Power Syst Res 208:107891

    Article  Google Scholar 

  10. Ruiz-Rodriguez F, Hernandez J, Jurado F (2020) Iterative harmonic load flow by using the point-estimate method and complex affine arithmetic for radial distribution systems with photovoltaic uncertainties. Int J Electr Power Energy Syst 118:105765

    Article  Google Scholar 

  11. Arrillaga J, Watson NR (2004) Power system harmonics. John Wiley & Sons

    Google Scholar 

  12. Junior HMR, Melo ID, Nepomuceno EG (2022) An interval power flow for unbalanced distribution systems based on the three-phase current injection method. Int J Electr Power Energy Syst 139:107921

    Article  Google Scholar 

  13. Yin X-X, Lin Y-G, Li W, Gu Y-J, Liu H-W, Lei P-F (2015) A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics. Energy 85:677–686

    Article  Google Scholar 

  14. Romero A, Zini H, Rattá G, Dib R (2008) A fuzzy number based methodology for harmonic load-flow calculation, considering uncertainties. Lat Am Appl Res 38(3):205–212

    Google Scholar 

  15. Zhang Y, Wang J, Zhao G (2017) “An uncertain harmonic power-flow algorithm based on cloud model for energy internet,” in 2017 IEEE International Conference on Energy Internet (ICEI), pp 188–192, IEEE

  16. Weida H, Yan Z, Zhenguo S “Newton-raphson interval harmonic power flow based on affine arithmetic,” in IECON 2017-43rd annual conference of the IEEE industrial electronics society, pp. 6093–6098, IEEE

  17. Pereira L, Da Costa V, Rosa A (2012) Interval arithmetic in current injection power flow analysis. Int J Electr Power Energy Syst 43(1):1106–1113

    Article  Google Scholar 

  18. Rese L, Costa AS, e Silva AS (2013) “A modified load flow algorithm for microgrids operating in islanded mode,” in 2013 IEEE PES conference on innovative smart grid technologies (ISGT Latin America), pp. 1–7, IEEE

  19. La Gatta P, Passos Filho J, Pereira J, Henriques R, Alves F (2014) “Methodology for representation of primary frequency control of synchronous generators in the power flow problem,” Proceedings of the XIII SEPOPE, pp. 1–6

  20. Heydt GT (2005) “Electric power quality,” in The Electrical Engineering Handbook, pp 805–810, Elsevier Inc

  21. Dommel HW et al (1986) “Electromagnetic transients program reference manual,’’ Bonneville Power Administration. Portland, OR, pp 4–4

    Google Scholar 

  22. Halpin SM (2003) “Harmonic modeling and simulation requirements for the revised ieee standard 519-1992,” in 2003 IEEE power engineering society general meeting (IEEE Cat. No. 03CH37491), vol. 2, pp. 1204–1205, IEEE

  23. Burch R, Chang G-K, Hatziadoniu C, Grady M, Liu Y, Marz M, Ortmeyer T, Ranade S, Ribeiro P, Xu W (2003) Impact of aggregate linear load modeling on harmonic analysis: a comparison of common practice and analytical models. IEEE Trans Power Deliv 18(2):625–630

    Article  Google Scholar 

  24. Baran ME, Wu FF (1989) Optimal capacitor placement on radial distribution systems. IEEE Trans Power Deliv 4(1):725–734

    Article  Google Scholar 

  25. La Gatta P (2012) “Desenvolvimento de ferramentas para análise de regime permanente de microrredes ilhadas,” Dissertaçã o de Mestrado-UFJF

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

de Sousa, L.L.S, de Melo, I.D and Variz. A. M. wrote the main manuscript text and prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Igor D. Melo.

Ethics declarations

Conflict of interest

No Conflict of interest.

Etical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A First and second derivatives

A First and second derivatives

The first derivatives of the active and reactive powers (\(P_k\) and \(Q_k\)) in relation to the state variables that make up the Jacobian matrix are presented from Eqs. (35) to (46) where \( G_{km}\) is the conductance of the line connecting the bus k to m; \(B_{km}\) is the susceptibility of the line connecting the bus k to m; \(V_k\) is the magnitude of the voltage on bus k and \(\theta _k\) are the stress angles on bus k.

$$\begin{aligned}{} & {} \frac{{\partial P}_k}{{\partial \theta }_m}=\ V_k{V_m(G}_{{km}_{\ }}{\textrm{sen} {\theta }_{km}\ }-\ B_{km}{\textrm{cos} {\theta }_{km}\ }) \end{aligned}$$
(35)
$$\begin{aligned}{} & {} \frac{{\partial P}_k}{{\partial \theta }_k}=\ -{V_k}^2B_{kk}-Q_k \end{aligned}$$
(36)
$$\begin{aligned}{} & {} \frac{{\partial P}_k}{{\partial V}_m}=\ V_k{(G}_{{km}_{\ }}{\textrm{cos} {\theta }_{km}\ }+\ B_{km}{\textrm{sen} {\theta }_{km}\ }) \end{aligned}$$
(37)
$$\begin{aligned}{} & {} \frac{{\partial P}_k}{{\partial V}_k}=\ \frac{P_k+{V_k}^2G_{kk}}{V_k} \end{aligned}$$
(38)
$$\begin{aligned}{} & {} \frac{{\partial P}_k}{{\partial P_{g_k}}}=-1 \end{aligned}$$
(39)
$$\begin{aligned}{} & {} \frac{{\partial P}_k}{{\partial Q_{g_k}}}=\frac{{\partial P}_k}{{\partial f}}=0 \end{aligned}$$
(40)
$$\begin{aligned}{} & {} \frac{{\partial Q}_k}{{\partial \theta }_m}=\ {-V}_k{V_m(G}_{{km}_{\ }}{\textrm{cos} {\theta }_{km}\ }+\ B_{km}{\textrm{sen} {\theta }_{km}\ }) \end{aligned}$$
(41)
$$\begin{aligned}{} & {} \frac{{\partial Q}_k}{{\partial \theta }_k}=\ P_k-{V_k}^2G_{kk} \end{aligned}$$
(42)
$$\begin{aligned}{} & {} \frac{{\partial Q}_k}{{\partial V}_m}=\ V_k{(G}_{{km}_{\ }}{\textrm{sen} {\theta }_{km}\ }-\ B_{km}{\textrm{cos} {\theta }_{km}\ }) \end{aligned}$$
(43)
$$\begin{aligned}{} & {} \frac{{\partial Q}_k}{{\partial V}_k}=\ \frac{Q_k-{V_k}^2.B_{kk}}{V_k} \end{aligned}$$
(44)
$$\begin{aligned}{} & {} \frac{{\partial Q}_k}{{\partial Q_{g_k}}}=-1 \end{aligned}$$
(45)
$$\begin{aligned}{} & {} \frac{{\partial Q}_k}{{\partial P_{g_k}}}=\frac{{\partial Q}_k}{{\partial f}}=0 \end{aligned}$$
(46)

The active power generation at PV buses is modelled conform in which Eq. (1) which considers the steady state droop frequency regulation mathematical for all generating units. Thus, the partial derivative of the frequency control equation in relation to the active power generated by the DG and in with respect to the system frequency corresponds to (47) and (48), respectively.

$$\begin{aligned}{} & {} \frac{{\partial y}'_k}{{\partial P_{g_k}}}=1 \end{aligned}$$
(47)
$$\begin{aligned}{} & {} \frac{{\partial y}'_k}{{\partial f}}=K_f \end{aligned}$$
(48)

As \(y'_k\), is not a function of \(\theta _k\), \(V_k\) and \(Q_g\) then the corresponding partial derivatives are given by:

$$\begin{aligned} \frac{{\partial y}'_k}{{\partial \theta _k}}=\frac{{\partial y}'_k}{{\partial V_k}}=\frac{{\partial y}'_k}{{\partial Q_{g_k}}}=0 \end{aligned}$$
(49)

The partial voltage derivatives of each DG in the system correspond to:

$$\begin{aligned}{} & {} \frac{{\partial V}'_k}{{\partial V_k}}=1 \end{aligned}$$
(50)
$$\begin{aligned}{} & {} \frac{{\partial V}'_k}{{\partial \theta _k}}=\frac{{\partial V}'_k}{{\partial P_{g_k}}}=\frac{{\partial V}'_k}{{\partial Q_{g_k}}}=\frac{{\partial V}'_k}{{\partial f}}=0 \end{aligned}$$
(51)

The slack bus is a single bus in the network and can be chosen for any bar i, where the partial derivatives with respect to \(\theta _i\), \(V_k\), \(P_{g_k}\), \(Q_{g_k}\) and f are given by:

$$\begin{aligned}{} & {} \frac{{\partial \theta }'_i}{{\partial \theta _i}}=1 \end{aligned}$$
(52)
$$\begin{aligned}{} & {} \frac{{\partial \theta }'_i}{{\partial V_k}}=\frac{{\partial \theta }'_i}{{\partial P_{g_k}}}=\frac{{\partial \theta }'_i}{{\partial Q_{g_k}}}=\frac{{\partial \theta }'_i}{{\partial f}}=0 \end{aligned}$$
(53)

The residues are formed according to Eqs. (54) to (58).

$$\begin{aligned}{} & {} \Delta P_k=P_k^{esp}-P_k^{calc} \end{aligned}$$
(54)
$$\begin{aligned}{} & {} \Delta Q_k=Q_k^{esp}-Q_k^{calc} \end{aligned}$$
(55)
$$\begin{aligned}{} & {} \Delta y'_{ng}=P_{g_{ng}}^{esp}-P_{g_{ng}}^{calc}-k_f \cdot (f^{esp}-f) \end{aligned}$$
(56)
$$\begin{aligned}{} & {} \Delta V'_{ng}=V_{ng}^{esp}-V_{ng}^{calc} \end{aligned}$$
(57)
$$\begin{aligned}{} & {} \Delta \theta '_i=\theta _{i}^{esp}-\theta _i^{calc} \end{aligned}$$
(58)

Equation (2) is then solved and the state variables are updated at each iteration it, as seen from Eqs. (59) - (63), as follows:

$$\begin{aligned}{} & {} {\theta _k}^{(it+1)}={\theta _k}^{(it)}+{\Delta \theta _k}^{(it)} \end{aligned}$$
(59)
$$\begin{aligned}{} & {} {V_k}^{((it)+1)}={V_k}^{(it)}+{\Delta V_k}^{(it)} \end{aligned}$$
(60)
$$\begin{aligned}{} & {} {P_{g_k}}^{(it+1)}={P_{g_k}}^{(it)}+{\Delta P_{g_k}}^{(it)} \end{aligned}$$
(61)
$$\begin{aligned}{} & {} {Q_{g_k}}^{(it+1)}={Q_{g_k}}^{(it)}+{\Delta Q_{g_k}}^{(it)} \end{aligned}$$
(62)
$$\begin{aligned}{} & {} f^{(it+1)}=f^{(it)}+ \Delta f^{(it)} \end{aligned}$$
(63)

The second derivatives of the active and reactive powers with respect to the state variables are provided by Equations from (64) to (117):

$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _k^2}=-P_k+V_k^2G_{kk} \end{aligned}$$
(64)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _k \partial \theta _m}=\frac{\partial ^2 P_k}{\partial \theta _m \partial \theta _k}=V_kV_m(G_{km}cos\theta _{km}+B_{km}sen\theta _{km})\nonumber \\ \end{aligned}$$
(65)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial V_k \partial \theta _k}=-\frac{Q_k}{V_k}-V_kB_{kk} \end{aligned}$$
(66)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial V_m \partial \theta _k}=\frac{\partial ^2 P_k}{\partial \theta _k \partial V_m}=V_k(-G_{km}sen\theta _{km}+B_{km}cos\theta _{km})\nonumber \\ \end{aligned}$$
(67)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _m^2}=V_kV_m(-G_{km}cos\theta _{km}-B_{km}sen\theta _{km}) \end{aligned}$$
(68)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial V_k \partial \theta _m}=\frac{\partial ^2 P_k}{\partial \theta _m \partial V_k}=V_m(G_{km}sen\theta _{km}-B_{km}cos\theta _{km})\nonumber \\ \end{aligned}$$
(69)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial V_m \partial \theta _m}=\frac{\partial ^2 P_k}{\partial \theta _m \partial V_m}=V_k(G_{km}sen\theta _{km}-B_{km}cos\theta _{km})\nonumber \\ \end{aligned}$$
(70)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial V_k^2 }=2G_{kk} \end{aligned}$$
(71)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial V_m \partial V_k}=\frac{\partial ^2 P_k}{\partial V_k \partial V_m}=(G_{km}cos\theta _{km}+B_{km}sen\theta _{km}) \end{aligned}$$
(72)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial V_m^2 }=0 \end{aligned}$$
(73)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial V_m \partial f}=\frac{\partial ^2 P_k}{\partial V_k \partial f}=\frac{\partial ^2 P_k}{\partial f \partial V_m}=\frac{\partial ^2 P_k}{\partial f \partial V_k}=0\nonumber \\ \end{aligned}$$
(74)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _k \partial Q_{g_k}}=\frac{\partial ^2 P_k}{ \partial Q_{g_k} \partial \theta _k}=-1 \end{aligned}$$
(75)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _k \partial P_{g_k}}=\frac{\partial ^2 P_k}{\partial P_{g_k}\partial \theta _k}=0 \end{aligned}$$
(76)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _k \partial P_{g_m}}=\frac{\partial ^2 P_k}{\partial P_{g_m} \partial \theta _k}=0 \end{aligned}$$
(77)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _k \partial Q_{g_k}}=\frac{\partial ^2 P_k}{ \partial Q_{g_k} \partial \theta _k}=0 \end{aligned}$$
(78)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _m \partial P_{g_k}}=\frac{\partial ^2 P_k}{\partial P_{g_k}\partial \theta _m}=0 \end{aligned}$$
(79)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _m \partial P_{g_m}}=\frac{\partial ^2 P_k}{\partial P_{g_m} \partial \theta _m}=0 \end{aligned}$$
(80)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _m \partial Q_{g_k}}=\frac{\partial ^2 P_k}{ \partial Q_{g_k} \partial \theta _m}=0 \end{aligned}$$
(81)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _m \partial Q_{g_m}}=\frac{\partial ^2 P_k}{ \partial Q_{g_m} \partial \theta _m}=0 \end{aligned}$$
(82)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{ \partial V_k \partial P_{g_k} }=\frac{\partial ^2 P_k}{ \partial P_{g_k} \partial V_k}=\frac{1}{V_k} \end{aligned}$$
(83)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{ \partial V_k \partial P_{g_m} }=\frac{\partial ^2 P_k}{ \partial P_{g_m} \partial V_k}=0 \end{aligned}$$
(84)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{ \partial V_k \partial Q_{g_k} }=\frac{\partial ^2 P_k}{ \partial Q_{g_k} \partial V_k}=0 \end{aligned}$$
(85)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{ \partial V_k \partial Q_{g_m} }=\frac{\partial ^2 P_k}{ \partial Q_{g_m} \partial V_k}=0 \end{aligned}$$
(86)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{ \partial V_m \partial P_{g_k} }=\frac{\partial ^2 P_k}{ \partial P_{g_k} \partial V_m}=0 \end{aligned}$$
(87)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{ \partial V_m \partial P_{g_m} }=\frac{\partial ^2 P_k}{ \partial P_{g_m} \partial V_m}=0 \end{aligned}$$
(88)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{ \partial V_m \partial Q_{g_k} }=\frac{\partial ^2 P_k}{ \partial Q_{g_k} \partial V_m}=0 \end{aligned}$$
(89)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{ \partial V_m \partial Q_{g_m} }=\frac{\partial ^2 P_k}{ \partial Q_{g_m} \partial V_m}=0 \end{aligned}$$
(90)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial \theta _k^2}=-Q_k-V_k^2B_{kk} \end{aligned}$$
(91)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial \theta _k \partial \theta _m}=\frac{\partial ^2 Q_k}{\partial \theta _m \partial \theta _k}=V_kV_m(G_{km}sen\theta _{km}-B_{km}cos\theta _{km})\nonumber \\ \end{aligned}$$
(92)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial V_k \partial \theta _k}=\frac{P_k}{V_k}-V_kG_{kk} \end{aligned}$$
(93)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial V_m \partial \theta _k}=\frac{\partial ^2 Q_k}{\partial \theta _k \partial V_m}=V_k(G_{km}cos\theta _{km}+B_{km}sen\theta _{km})\nonumber \\ \end{aligned}$$
(94)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial \theta _m^2}=V_kV_m(-G_{km}sen\theta _{km}+B_{km}cos\theta _{km}) \end{aligned}$$
(95)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial V_k \partial \theta _m}=\frac{\partial ^2 Q_k}{\partial \theta _m \partial V_k}=V_m(-G_{km}cos\theta _{km}-B_{km}sen\theta _{km})\nonumber \\ \end{aligned}$$
(96)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial V_m \partial \theta _m}=\frac{\partial ^2 Q_k}{\partial \theta _m \partial V_m}=V_k(-G_{km}cos\theta _{km}-B_{km}sen\theta _{km})\nonumber \\ \end{aligned}$$
(97)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial V_k^2 }=2B_{kk} \end{aligned}$$
(98)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial V_m \partial V_k}=\frac{\partial ^2 Q_k}{\partial V_k \partial V_m}=(G_{km}sen\theta _{km}-B_{km}cos\theta _{km}) \end{aligned}$$
(99)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial V_m^2 }=0 \end{aligned}$$
(100)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial V_m \partial f}=\frac{\partial ^2 Q_k}{\partial V_k \partial f}=\frac{\partial ^2 Q_k}{\partial f \partial V_m}=\frac{\partial ^2 Q_k}{\partial f \partial V_k}=0 \end{aligned}$$
(101)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial \theta _k \partial P_{g_k}}=\frac{\partial ^2 Q_k}{ \partial P_{g_k} \partial \theta _k}=1 \end{aligned}$$
(102)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial \theta _k \partial P_{g_m}}=\frac{\partial ^2 Q_k}{\partial P_{g_m}\partial \theta _k}=0 \end{aligned}$$
(103)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial \theta _k \partial Q_{g_m}}=\frac{\partial ^2 Q_k}{\partial Q_{g_m} \partial \theta _k}=\frac{\partial ^2 P_k}{\partial \theta _k \partial Q_{g_k}}=\frac{\partial ^2 P_k}{ \partial Q_{g_k} \partial \theta _k}=0\nonumber \\ \end{aligned}$$
(104)
$$\begin{aligned}{} & {} \frac{\partial ^2 P_k}{\partial \theta _k \partial Q_{g_k}}=\frac{\partial ^2 P_k}{ \partial Q_{g_k} \partial \theta _k}=0 \end{aligned}$$
(105)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial \theta _m \partial P_{g_k}}=\frac{\partial ^2 Q_k}{\partial P_{g_k}\partial \theta _m}=0 \end{aligned}$$
(106)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial \theta _m \partial P_{g_m}}=\frac{\partial ^2 Q_k}{\partial P_{g_m} \partial \theta _m}=0 \end{aligned}$$
(107)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{\partial \theta _m \partial Q_{g_m}}=\frac{\partial ^2 Q_k}{ \partial Q_{g_k} \partial \theta _m}=0 \end{aligned}$$
(108)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{ \partial Q_{g_m} \partial \theta _m}=\frac{\partial ^2 Q_k}{\partial \theta _m \partial Q_{g_m} }=0 \end{aligned}$$
(109)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{ \partial V_k \partial Q_{g_k} }=\frac{\partial ^2 Q_k}{ \partial Q_{g_k} \partial V_k}=\frac{1}{V_k} \end{aligned}$$
(110)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{ \partial V_k \partial P_{g_m} }=\frac{\partial ^2 Q_k}{ \partial P_{g_m} \partial V_k}=0 \end{aligned}$$
(111)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{ \partial V_k \partial P_{g_k} }=\frac{\partial ^2 Q_k}{ \partial P_{g_k} \partial V_k}=0 \end{aligned}$$
(112)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{ \partial V_k \partial Q_{g_m} }=\frac{\partial ^2 Q_k}{ \partial Q_{g_m} \partial V_k}=0 \end{aligned}$$
(113)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{ \partial V_m \partial P_{g_k} }=\frac{\partial ^2 Q_k}{ \partial P_{g_k} \partial V_m}=0 \end{aligned}$$
(114)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{ \partial V_m \partial P_{g_m} }=\frac{\partial ^2 Q_k}{ \partial P_{g_m} \partial V_m}=0 \end{aligned}$$
(115)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{ \partial V_m \partial Q_{g_k} }=\frac{\partial ^2 Q_k}{ \partial Q_{g_k} \partial V_m}=0 \end{aligned}$$
(116)
$$\begin{aligned}{} & {} \frac{\partial ^2 Q_k}{ \partial V_m \partial Q_{g_m} }=\frac{\partial ^2 Q_k}{ \partial Q_{g_m} \partial V_m}=0 \end{aligned}$$
(117)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, L.L.S., Melo, I.D. & Variz, A.M. Interval harmonic power flow for microgrids: an approach using the second-order Taylor series. Electr Eng (2024). https://doi.org/10.1007/s00202-024-02341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00202-024-02341-8

Keywords

Navigation