Skip to main content

Advertisement

Log in

Probabilistic approach to investigate the impact of distributed generation on voltage deviation in distribution system

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The increasing penetration of renewable-based generation in the distribution network adds randomness to the bus voltage due to its stochastic characteristics. Consequently, the distribution network faces voltage limit violations at multiple buses. In this scenario, the traditional voltage control method fails to maintain the voltage profile of the network due to its slow response time. A fast and dynamic voltage control technique can be achieved by utilizing the voltage-controlling capability of available DGs in the network with the information about the impact of DG-integrated bus on change in voltage at any bus in the network. Evaluating this information using the traditional probabilistic load flow method is computationally inefficient for real-time applications. Therefore, in this paper, a principal component analysis (PCA)-based novel probabilistic voltage sensitivity index (PVSI) is proposed. It ranks the DG-integrated buses by evaluating the impact of power perturbation at DG-integrated buses on changes in voltage at any bus in the network. The PVSI is analytically derived to reduce the computation time for ranking. Further, the proposed PVSI is validated on the 69-bus and the 141-bus distribution systems by comparing it with the traditional Monte Carlo simulation (MCS) and joint differential entropy (JDE) in terms of accuracy and computation time. From the simulation, it is observed that PVSI gives a similar ranking as both methods in less computation time. Due to the advantage in computation time, the proposed method enables the distribution system operator (DSO) to use this information for fast and dynamic voltage control in a real-time scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mahmud N, Zahedi A (2016) Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation. Renew Sustain Energy Rev 64:582–595

    Article  Google Scholar 

  2. Ali A, Mahmoud K, Lehtonen M et al (2020) Enhancing hosting capacity of intermittent wind turbine systems using bi-level optimisation considering oltc and electric vehicle charging stations. IET Renew Power Gener 14(17):3558–3567

    Article  Google Scholar 

  3. Liu X, Aichhorn A, Liu L, Li H (2012) Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration. IEEE Trans Smart Grid 3(2):897–906

    Article  Google Scholar 

  4. Kim B, Nam Y-H, Ko H, Park C-H, Kim H-C, Ryu K-S, Kim D-J (2019) Novel voltage control method of the primary feeder by the energy storage system and step voltage regulator. Energies 12(17):3357

    Article  Google Scholar 

  5. Ghosh S, Rahman S, Pipattanasomporn M (2016) Distribution voltage regulation through active power curtailment with PV inverters and solar generation forecasts. IEEE Trans Sustain Energy 8(1):13–22

    Article  Google Scholar 

  6. Wu L, Guan L (2019) Integer quadratic programming model for dynamic var compensation considering short-term voltage stability. IET Gener Transm Distrib 13(5):652–661

    Article  Google Scholar 

  7. Razavi S-E, Rahimi E, Javadi MS, Nezhad AE, Lotfi M, Shafie-khah M, Catalão JP (2019) Impact of distributed generation on protection and voltage regulation of distribution systems: a review. Renew Sustain Energy Rev 105:157–167

    Article  Google Scholar 

  8. Guo Y, Wu Q, Gao H, Chen X, Østergaard J, Xin H (2018) MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system. IEEE Trans Sustain Energy 10(4):1731–1739

    Article  Google Scholar 

  9. Abdallah WJ, Hashmi K, Faiz MT, Flah A, Channumsin S, Mohamed MA, Ustinov DA (2023) A novel control method for active power sharing in renewable-energy-based micro distribution networks. Sustainability 15(2):1579

    Article  Google Scholar 

  10. Zhang Z, Ochoa LF, Valverde G (2017) A novel voltage sensitivity approach for the decentralized control of dg plants. IEEE Trans Power Syst 33(2):1566–1576

    Article  Google Scholar 

  11. Othman MM, Ahmed MH, Salama MM (2019) A coordinated real-time voltage control approach for increasing the penetration of distributed generation. IEEE Syst J 14(1):699–707

    Article  Google Scholar 

  12. Preece R, Milanović JV (2015) Assessing the applicability of uncertainty importance measures for power system studies. IEEE Trans Power Syst 31(3):2076–2084

    Article  Google Scholar 

  13. Su C-L (2009) Stochastic evaluation of voltages in distribution networks with distributed generation using detailed distribution operation models. IEEE Trans Power Syst 25(2):786–795

    Article  Google Scholar 

  14. Jhala K, Natarajan B, Pahwa A (2017) Probabilistic voltage sensitivity analysis (PVSA)—a novel approach to quantify impact of active consumers. IEEE Trans Power Syst 33(3):2518–2527

    Article  Google Scholar 

  15. Kulmala A, Repo S, Jrventausta P (2014) Coordinated voltage control in distribution networks including several distributed energy resources. IEEE Trans Smart Grid 5(4):2010–2020

    Article  Google Scholar 

  16. Jahangiri P, Aliprantis DC (2013) Distributed volt/var control by PV inverters. IEEE Trans Power Syst 28(3):3429–3439

    Article  Google Scholar 

  17. Tonkoski R, Lopes LAC, El-Fouly THM (2011) Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention. IEEE Trans Sustain Energy 2(2):139–147. https://doi.org/10.1109/TSTE.2010.2098483

    Article  Google Scholar 

  18. Wang Y, Zhao T, Ju C, Xu Y, Wang P (2019) Two-level distributed volt/var control using aggregated PV inverters in distribution networks. IEEE Trans Power Deliv 35(4):1844–1855

    Article  Google Scholar 

  19. Chai Y, Guo L, Wang C, Zhao Z, Du X, Pan J (2018) Network partition and voltage coordination control for distribution networks with high penetration of distributed PV units. IEEE Trans Power Syst 33(3):3396–3407

    Article  Google Scholar 

  20. Zhao B, Xu Z, Xu C, Wang C, Lin F (2017) Network partition-based zonal voltage control for distribution networks with distributed PV systems. IEEE Trans Smart Grid 9(5):4087–4098

    Article  Google Scholar 

  21. Ding J, Zhang Q, Hu S, Wang Q, Ye Q (2018) Clusters partition and zonal voltage regulation for distribution networks with high penetration of PVs. IET Gener Transm Distrib 12(22):6041–6051

    Article  Google Scholar 

  22. Jhala K, Natarajan B, Pahwa A (2019) The dominant influencer of voltage fluctuation (DIVF) for power distribution system. IEEE Trans Power Syst 34(6):4847–4856

    Article  Google Scholar 

  23. Tamp F, Ciufo P (2014) A sensitivity analysis toolkit for the simplification of MV distribution network voltage management. IEEE Trans Smart Grid 5(2):559–568

    Article  Google Scholar 

  24. Grainger JJ (1999) Power system analysis. McGraw-Hill

  25. Jhala K, Natarajan B, Pahwa A (2018) Probabilistic voltage sensitivity analysis (PVSA) for random spatial distribution of active consumers. In: 2018 IEEE power & energy society innovative smart grid technologies conference (ISGT), pp 1–5. IEEE (2018)

  26. Papoulis A, Pillai SU (2002) Probability, random variables, and stochastic processes. Tata McGraw-Hill Education (2002)

  27. Jackson JE (1991) A users guide to principal component analysis. Wiley, New York

    Book  Google Scholar 

  28. Baran ME, Wu FF (1989) Optimal capacitor placement on radial distribution systems. IEEE Trans Power Deliv 4(1):725–734

    Article  Google Scholar 

  29. Khodr H, Olsina F, De Oliveira-De Jesus P, Yusta J (2008) Maximum savings approach for location and sizing of capacitors in distribution systems. Electric Power Syst Res 78(7):1192–1203

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

DK contributed to conceptualization, formal analysis, methodology, investigation, validation, visualization, and writing original draft. BPP contributed to supervision, resources, software, writing—review and editing.

Corresponding author

Correspondence to Digamber Kumar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Formation of covariance matrix

Formation of covariance matrix

$$\begin{aligned}{} & {} \Sigma _{(\Delta V_{oak},\Delta V_{o})}= \left[ \begin{array}{llll} \hbox {var}(\Delta V^r_{oak}) &{} \hbox {cov}(\Delta V^i_{oak},\Delta V^r_{oak}) &{} \hbox {cov}(\Delta V^r_{oak},\Delta V^i_{o})&{}\hbox {cov}(\Delta V^r_{oak},\Delta V^r_{o}) \\ \hbox {cov}(\Delta V^i_{oak},\Delta V^r_{oak}) &{} \hbox {var}(\Delta V^i_{oak}) &{} \hbox {cov}(\Delta V^i_{oak},\Delta V^r_{o}) &{} \hbox {cov}(\Delta V^i_{oak},\Delta V^i_{o}) \\ \hbox {cov}(\Delta V^r_{o},\Delta V^r_{oak}) &{} \hbox {cov}(\Delta V^i_{oak},\Delta V^r_{o}) &{} \hbox {var}(\Delta V^r_{o}) &{} \hbox {cov}(\Delta V^i_{o},\Delta V^r_{o})\\ \hbox {cov}(\Delta V^r_{oak},\Delta V^r_{o}) &{}\hbox {cov}(\Delta V^i_{oak},\Delta V^i_{o}) &{} \hbox {cov}(\Delta V^i_{o},\Delta V^r_{o}) &{} \hbox {var}(\Delta V^i_{o})\\ \end{array}\right] \end{aligned}$$
(A1)
$$\begin{aligned}{} & {} \Sigma _{(\Delta V^i_{oak},\Delta V^i_{o})}= \begin{bmatrix} \hbox {var}(\Delta V^i_{oak}) &{} \hbox {cov}(\Delta V^i_{oak},\Delta V^r_{o}) \\ \hbox {cov}(\Delta V^i_{oak},\Delta V^r_{o}) &{} \hbox {var}(\Delta V^i_{o}) \end{bmatrix} \end{aligned}$$
(A2)
$$\begin{aligned}{} & {} \begin{aligned}&\hbox {Mean}(\Delta V^r_{o})=\sum _{\begin{array}{c} k=1 \end{array}}^nE(\Delta V^r_{oak})\\&\quad =-R_{oak}\sum _{\begin{array}{c} k=1 \end{array}}^nE(\Delta P_{oak}) +X_{oak}\sum _{\begin{array}{c} k=1 \end{array}}^nE(\Delta Q_{oak}) \end{aligned} \end{aligned}$$
(A3)
$$\begin{aligned}{} & {} \begin{aligned}&Mean(\Delta V^i_{o})=\sum _{\begin{array}{c} k=1 \end{array}}^nE(\Delta V^i_{oak})\\&\quad =-R_{oak}\sum _{\begin{array}{c} k=1 \end{array}}^nE(\Delta Q_{oak}) -X_{oak}\sum _{\begin{array}{c} k=1 \end{array}}^nE(\Delta P_{oak}) \end{aligned} \end{aligned}$$
(A4)
$$\begin{aligned}{} & {} \begin{aligned}&\hbox {var}(\Delta V^r_{o})=\sum _{\begin{array}{c} k=1 \end{array}}^n \hbox {var}(\Delta V^r_{oak})\\&\quad =\sum _{\begin{array}{c} k=1 \end{array}}^n \hbox {var}(\Delta V^r_{oak})+\sum _{\begin{array}{c} j=1 \\ k\ne j \end{array}}^n(\Delta V^r_{oak}\Delta V^r_{oaj} ) \end{aligned} \end{aligned}$$
(A5)
$$\begin{aligned}{} & {} \begin{aligned}&\hbox {var}(\Delta V^i_{o})=\sum _{\begin{array}{c} k=1 \end{array}}^n \hbox {var}(\Delta V^i_{oak})\\&\quad =\sum _{\begin{array}{c} k=1 \end{array}}^n \hbox {var}(\Delta V^i_{oak})+\sum _{\begin{array}{c} j=1 \\ k\ne j \end{array}}^n(\Delta V^i_{oak}\Delta V^i_{oaj} ) \end{aligned} \end{aligned}$$
(A6)
$$\begin{aligned}{} & {} \hbox {cov}(\Delta V^r_{oak},\Delta V^r_{o})=E(\Delta V^r_{oak},\Delta V^r_{o}) =E(\Delta V^r_{oak}\sum _{\begin{array}{c} j=1 \end{array} }^n \Delta V^r_{oaj}) \end{aligned}$$
(A7)
$$\begin{aligned}{} & {} =E(\Delta V^r_{oak}\Delta V^r_{oak})+E(\sum _{\begin{array}{c} j=1 \\ k\ne j \end{array} }^n\Delta V^r_{oak}\Delta V^r_{oaj} ) \vspace{-.5cm}\nonumber \\{} & {} =\hbox {var}(\Delta V^r_{oak})+\sum _{\begin{array}{c} j=1 \\ k\ne j \end{array} }^nE(\Delta V^r_{oak}\Delta V^r_{oaj} ) \end{aligned}$$
(A8)
$$\begin{aligned}{} & {} \hbox {cov}(\Delta V^i_{oak},\Delta V^i_{o})=E(\Delta V^i_{oak},\Delta V^i_{o}) =E(\Delta V^i_{oak}\sum _{\begin{array}{c} j=1 \end{array} }^n \Delta V^i_{oaj})\nonumber \\{} & {} =\hbox {var}(\Delta V^i_{oak})+\sum _{\begin{array}{c} j=1 \\ k\ne j \end{array} }^nE(\Delta V^i_{oak}\Delta V^i_{oaj} ) \end{aligned}$$
(A9)

From (10)

$$\begin{aligned}{} & {} \hbox {var}(\Delta V^r_{oak})=\hbox {var}(\Delta Q_{ak}X_{oak}-\Delta P_{ak}R_{oak}) \end{aligned}$$
(A10)
$$\begin{aligned}{} & {} \begin{aligned}&=X^2_{oak}\hbox {var}(\Delta Q_{ak})+R^2_{oak}\hbox {var}(\Delta P_{ak}) \\&\quad -2R_{oak}X_{oak}\hbox {cov}(\Delta P_{ak}\Delta Q_{ak}) \\ \end{aligned} \end{aligned}$$
(A11)
$$\begin{aligned}{} & {} \begin{aligned}&E(\Delta V^r_{oak},\Delta V^r_{oaj}) =E((\Delta Q_{ak}X_{oak}-\Delta P_{ak}R_{oak})\\&\quad (\Delta Q_{aj}X_{oaj}-\Delta P_{aj}R_{oaj})) \end{aligned} \end{aligned}$$
(A12)
$$\begin{aligned}{} & {} =E(\Delta Q_{aj}\Delta Q_{ak}X_{oak}X_{oaj})-E(\Delta Q_{aj}\Delta P_{ak}R_{oak}X_{oaj}) \nonumber \\{} & {} \quad -E(\Delta Q_{ak}\Delta P_{aj}R_{oaj}X_{oak})+E(\Delta P_{aj}\Delta P_{ak}R_{oak}X_{oak}) \nonumber \\{} & {} =X_{oak}X_{oaj}E(\Delta Q_{aj}\Delta Q_{ak})-R_{oak}X_{oaj}E(\Delta Q_{aj}\Delta P_{ak}) \nonumber \\{} & {} \quad -R_{oaj}X_{oai}E(\Delta Q_{ak}\Delta P_{aj})+R_{oai}X_{oak}E(\Delta P_{aj}\Delta P_{ak}) \nonumber \\= & {} X_{oak}X_{oaj}\hbox {cov}(\Delta Q_{aj}\Delta Q_{ak})-R_{oak}X_{oaj}\hbox {cov}(\Delta Q_{aj}\Delta P_{ak}) \nonumber \\{} & {} -R_{oaj}X_{oai}\hbox {cov}(\Delta Q_{ak}\Delta P_{aj})+R_{oai}X_{oak}\hbox {cov}(\Delta P_{aj}\Delta P_{ak}) \nonumber \\ \end{aligned}$$
(A13)

From (11)

$$\begin{aligned}{} & {} \begin{aligned} var(\Delta V^i_{oak})=\hbox {var}(-\Delta Q_{ak}R_{oak}-\Delta P_{ak}X_{oak}) \end{aligned} \end{aligned}$$
(A14)
$$\begin{aligned}{} & {} \begin{aligned}&\quad =R_{oak}\hbox {var}(\Delta Q_{ak})+X_{oak}\hbox {var}(\Delta P_{ak})\\&\quad +2X_{oak}R_{oak}\hbox {cov}(\Delta Q_{ak}\Delta P_{ak}) \end{aligned} \end{aligned}$$
(A15)
$$\begin{aligned}{} & {} \begin{aligned}&E(\Delta V^i_{oak},\Delta V^i_{oaj})=E((-\Delta Q_{ak}R_{oak}-\Delta P_{ak}X_{oak})\\&\quad (-\Delta Q_{aj}R_{oaj}-\Delta P_{aj}X_{oaj})) \end{aligned} \end{aligned}$$
(A16)
$$\begin{aligned} \nonumber \\{} & {} \begin{aligned}&R_{oai}R_{oaj}\hbox {cov}(\Delta Q_{ak}\Delta Q_{aj})+R_{oaj}X_{oak}\hbox {cov}(\Delta P_{ak}\Delta Q_{aj})\\&\quad X_{oaj}R_{oak}\hbox {cov}(\Delta P_{aj}\Delta Q_{ak})+X_{oaj}X_{oak}\hbox {cov}(\Delta P_{ak}\Delta P_{aj}) \end{aligned}\nonumber \\ \end{aligned}$$
(A17)
$$\begin{aligned}{} & {} \begin{aligned}&E(\Delta V^r_{oak},\Delta V^i_{o})=E((\Delta Q_{ak}R_{oak}-\Delta P_{ak}X_{oak})\\&\quad (-\Delta Q_{aj}R_{oaj}-\Delta P_{aj}X_{oaj})) \end{aligned} \end{aligned}$$
(A18)
$$\begin{aligned}{} & {} -X_{oak}R_{oaj}\hbox {cov}(\Delta Q_{ak}\Delta Q_{aj})+R_{oaj}R_{oak}\hbox {cov}(\Delta P_{ak}\Delta Q_{aj})\nonumber \\{} & {} \quad -X_{oak}X_{oak}\hbox {cov}(\Delta P_{aj}\Delta Q_{ak})+X_{oak}R_{oaj}\hbox {cov}(\Delta P_{ak}\Delta P_{aj}) \nonumber \\{} & {} E(\Delta V^i_{oak},\Delta V^r_{o})=-X_{oaj}R_{oak}\hbox {cov}(\Delta Q_{ak}\Delta Q_{aj})\nonumber \\{} & {} \quad +R_{oaj}R_{oak}\hbox {cov}(\Delta P_{aj}\Delta Q_{ak} +X_{oak}R_{oaj}\hbox {cov}(\Delta P_{ak}\Delta P_{aj})\nonumber \\{} & {} \quad -X_{oak}X_{oaj}\hbox {cov}(\Delta P_{ak}\Delta Q_{aj}) \end{aligned}$$
(A19)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Padhy, B.P. Probabilistic approach to investigate the impact of distributed generation on voltage deviation in distribution system. Electr Eng 105, 2621–2636 (2023). https://doi.org/10.1007/s00202-023-01820-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01820-8

Keywords

Navigation