Skip to main content

Advertisement

Log in

Dither frequency effects on extremum seeking control-based induction motor parameter estimation

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

A new induction motor (IM) rotor resistance estimator based on a perturbation-based extremum seeking control (ESC) is proposed. Since implementations of field-oriented control requires accurate values of IM parameters, such as rotor time constant, so, accurate and robust on-line estimations of such parameters are crucial for any modern industrial IM drives. Since dither signal frequency has significant effect on transient response and convergence time, so, selection of this frequency is a big challenge in accurate and fast parameter estimation. A comparison has been made to show the effect of dither signal frequency in parameter identification transient and convergence time. Meanwhile, since extremum seeking control is a model-free approach, so, it is robust against other induction motor parameter variations. The feasibility and effectiveness of the IM rotor time constant estimation by using ESC scheme have been verified by simulation and experimental results. A 2.2 kW experimental prototype has been implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kojabadi HM, Abarzadeh M, Chang L (2015) A comparative study of various methods of IM's rotor resistance estimation. In: Proceedings of ECCE, pp 2884–2891

  2. HM Kojabadi C Liuchen R Doraiswami 2005 A MRAS-based adaptive pseudoreduced-order flux observer for sensorless induction motor drives IEEE Trans Power Electron 20 4 930 938

    Article  Google Scholar 

  3. S Yang D Ding X Li Z Xie X Zhang L Chang 2017 A novel online parameter estimation method for indirect field oriented induction motor drives IEEE Trans Energy Convers 32 4 1562 1573

    Article  Google Scholar 

  4. MW Degner JM Guerrero F Briz 2006 Slip-gain estimation in field-orientation-controlled induction machines using the system transient response IEEE Trans Ind Appl 42 3 702 711

    Article  Google Scholar 

  5. JC Moreira TA Lipo 1993 A new method for rotor time constant tuning in indirect field oriented control IEEE Trans Power Electron 8 4 626 631

    Article  Google Scholar 

  6. S Wade W Dunnigan BW Williams 1997 A new method of rotor resistance estimation for vector-controlled induction machines IEEE Trans Ind Electron 44 2 247 257

    Article  Google Scholar 

  7. Rehman HU, Derdiyok A, Guven MK, Longya X (2001) An MRAS scheme for on-line rotor resistance adaptation of an induction machine. In: 2001 IEEE 32nd annual power electronics Specialists conference (IEEE cat. no. 01CH37230), vol 2, pp 817–822

  8. M Barut R Demir E Zerdali R Inan 2012 Real-time implementation of bi input-extended Kalman filter-based estimator for speed-sensorless control of induction motors IEEE Trans Ind Electron 59 11 4197 4206

    Article  Google Scholar 

  9. S Maiti C Chakraborty Y Hori MC Ta 2008 Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power IEEE Trans Ind Electron 55 2 594 601

    Article  Google Scholar 

  10. AVR Teja V Verma C Chakraborty 2015 A new formulation of reactive-power-based model reference adaptive system for sensorless induction motor drive IEEE Trans Ind Electron 62 11 6797 6808

    Article  Google Scholar 

  11. LJ Garces 1980 Parameter adaption for the speed-controlled static ac drive with a squirrel-cage induction motor IEEE Trans Ind Appl IA-16 2 173 178

    Article  Google Scholar 

  12. Dybkowski M, Antoni Bednar S (2019) Simultaneous estimation of the stator and rotor resistances in an induction motor drive using novel active and reactive power based model reference adaptive system. In: Proceedings of EDPE, pp 149–154

  13. M Haring E Skjong TA Johansen M Molinas 2018 Extremum-seeking control for harmonic mitigation in electrical grids of marine vessels IEEE Trans Ind Electron 35 1 1

    Google Scholar 

  14. Letchindjio CGF, Dewasme L, Vande Wouwer A (2019) Extemum seeking for micro-algae biomass biomass productivity maximization: an experimental validation. In: Proceedings of IFAC, 52, pp 281–286

  15. Leblanc M (1922) “Sur l’´ electrification des chemins de fer au moyen de courants alternatifs de fr´ equence ´ elev´ ee,” Revue G´ en´ erale de l’Electricit´ e

  16. M Krstic 2000 Performance improvement and limitation in extremum seeking control Syst Control Lett 39 5 313 326

    Article  MathSciNet  MATH  Google Scholar 

  17. Guay M, Dhaliwal S, Dochain D (2013) A time-varying extremum seeking control approach. In: American control conference (ACC), June 2013, pp 2643–2648

  18. Guay M, Burns DJ (2014) A comparison of extremum seeking algorithms applied to vapor compression system optimization. In: American control conference (ACC)

  19. MH Mahmud Y Wu Y Zhao 2019 Extremum seeking based optimum reference flux searching for direct torque control of interior permanent magnet synchronous motors IEEE Trans Transp Electrif 6 1 11

    Google Scholar 

  20. Ermilina OV, Mikhliov PG, Semenov AD, Sokolov AV (2020) Extremum seeking of asynchronous electric drive with frequency current regulation. In: Proceedings of the 2020 Moscow workshop on electronic and networking technologies (MWENT)

  21. Kamal NA, Ibrahim AM (2018) Conventional, intelligent, and fractional-order control method for maximum power point tracking of a photovoltaic system: a review. Fract Order Syst

  22. R Lyva C Alonso 2006 MPPT of photovoltaic systems using extremum—seeking control IEEE Trans Aerosp Electron Syst 42 1 249 258

    Article  Google Scholar 

  23. U Ciri MA Rotea S Leonardi 2017 Model-free control of wind farms: a comparative s tudy between individual and coordinated extremum seeking Renew Energy 113 1033 1045

    Article  Google Scholar 

  24. KB Ariyur M Kristic 2003 SISO scheme and linear analysis: real time optimization by extremum seeking control Wiley New York

    Book  Google Scholar 

  25. R Marino S Peresada P Tomei 2000 On-line stator and rotor resistance estimation for induction motors IEEE Trans Control Syst Technol 8 3 570 579

    Article  Google Scholar 

  26. M Wang D Wang G Dong H Wei X Liang Z Xu 2019 Simplified rotor and stator resistance estimation method based on direct rotor flux identification J Power Electron 19 3 751 760

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Madadi Kojabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madadi Kojabadi, H. Dither frequency effects on extremum seeking control-based induction motor parameter estimation. Electr Eng 105, 1555–1564 (2023). https://doi.org/10.1007/s00202-023-01755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01755-0

Keywords

Navigation