Skip to main content
Log in

Dynamic virtual resistance-based droop control for seamless transition operation of multi-parallel microgrid inverters

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Inverter is required to operate at both grid-connected and grid-forming mode for microgrid. When an unplanned microgrid disconnecting to grid circumstance happens, the transition will cause severe current shock to system with multi-parallel microgrid inverters. This paper adopts a dynamic virtual resistance-based droop control strategy and small signal analysis method to reduce the current shock, improve the system stability and safety. The large dynamic virtual resistance is added to the control loop when the mode transition event occurs so the shock current is limited. Comparison between the capacitor current feedback for seamless mode transition method and the proposed method is made to prove the validation, and parameters’ impact on the system is also analyzed. Results, which are conducted on MATLAB/Simulation and Hardware-in-the-Loop (HIL) experimental platform verify the feasibility of the proposed method in this paper, effectively reduce the current shock by more than 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data tables from this paper are available.

References

  1. Li J, Xue Y, Tian L et al (2017) Research on optimal configuration strategy of energy storage capacity in grid-connected microgrid. Prot Control Modern Power Syst 2(35):35–42

    Article  Google Scholar 

  2. Sharma G, Narayanan K, Adefarati T et al (2022) Frequency regularization of a linked wind–diesel system using dual structure fuzzy with ultra-capacitor. Prot Control Modern Power Syst 7(12):1–9

    Google Scholar 

  3. Tiwari R, Singh RK, Choudhary NK (2022) Coordination of dual setting overcurrent relays in microgrid with optimally determined relay characteristics for dual operating modes. Prot Control Modern Power Syst 7(6):1–18

    Google Scholar 

  4. Cao W, Ma Y, Wang F (2017) Sequence-impedance-based harmonic stability analysis and controller parameter design of three-phase inverter-based multibus AC power systems. IEEE Trans Power Electron 32(10):7674–7693

    Article  Google Scholar 

  5. Wang X, Blaabjerg F, Wu W (2014) Modeling and analysis of harmonic stability in an AC power-electronics-based power system. IEEE Trans Power Electron 29(12):6421–6432

    Article  Google Scholar 

  6. Andishgar MH, Gholipour E et al (2017) An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renew Sustain Energy Rev 80:1043–1060

    Article  Google Scholar 

  7. Cao W, Zhang X, Ma X et al. (2016) Stability criterion and controller parameter design of radial-line renewable systems with multiple inverters. 2016 IEEE applied power electronics conference and exposition (APEC), Long Beach, CA, 2229–2236

  8. Vukojevic A, Lukic S (2020) Microgrid protection and control schemes for seamless transition to island and grid synchronization. IEEE Trans Smart Grid 11(4):2845–2855

    Article  Google Scholar 

  9. Ganjian-Aboukheili M, Shahabi M, Shafiee Q et al (2020) Seamless transition of microgrids operation from grid-connected to islanded mode. IEEE Trans Smart Grid 11(3):2106–2114

    Article  Google Scholar 

  10. Arafat MN, Elrayyah A and Sozer Y (2014) An effective smooth transition control strategy using droop-based synchronization for parallel inverters. 2014 IEEE energy conversion congress and exposition (ECCE), Pittsburgh, PA, 2014: 3964–3970

  11. Lo K, Chen Y (2020) Design of a seamless grid-connected inverter for microgrid applications. IEEE Trans Smart Grid 11(1):194–202

    Article  Google Scholar 

  12. Babqi J, Etemadi AH (2017) MPC-based microgrid control with supplementary fault current limitation and smooth transition mechanisms. IET Gener Transm Distrib 11(9):2164–2172

    Article  Google Scholar 

  13. Lou G, Gu W, Wang J, Wang J, Gu B (2018) A unified control scheme based on a disturbance observer for seamless transition operation of inverter-interfaced distributed generation. IEEE Trans Smart Grid 9(5):5444–5454

    Article  Google Scholar 

  14. Ibrahim MYA, Hatem Z, Salama MMA (2012) Formation and robust control of distributed generation microgrids via direct voltage control and optimized dynamic power sharing. IEEE Trans Power Electron 27(3):1283–1294

    Article  Google Scholar 

  15. Talapur GG, Suryawanshi HM, Xu L, Shitole AB (2018) A reliable microgrid with seamless transition between grid connected and islanded mode for residential community with enhanced power quality. IEEE Trans Ind Appl 54(5):5246–5255

    Article  Google Scholar 

  16. Ochs DS, Mirafzal B, Sotoodeh P (2014) A method of seamless transitions between grid-tied and stand-alone modes of operation for utility-interactive three-phase inverters. IEEE Trans Ind Appl 50(3):1934–1941

    Article  Google Scholar 

  17. Buduma P, Das MK, Naayagi RT et al (2022) Seamless operation of master-slave organized AC microgrid with robust control, islanding detection, and grid synchronization. IEEE Trans Ind Appl 58(5):6724–6738

    Article  Google Scholar 

  18. Nguyen TH, Van TL, Nawaz A et al (2021) Feedback linearization-based control strategy for interlinking inverters of hybrid AC/DC microgrids with seamless operation mode transition. Energies 14:5613

    Article  Google Scholar 

  19. Benadli R, Khiari B and Sellami A (2015) Three-phase grid-connected photovoltaic system with maximum power point tracking technique based on voltage-oriented control and using sliding mode controller. IREC2015—The sixth international renewable energy congress, Sousse, pp. 1–6.

  20. Tran T, Chun T, Lee H, Kim H, Nho E (2013) PLL-based seamless transfer control between grid-connected and islanding modes in grid-connected inverters. IEEE Trans Power Electron 29(10):5218–5228

    Article  Google Scholar 

  21. Kadri R, Gaubert J, Champenois G (2011) An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control. IEEE Trans Industr Electron 58(1):66–75

    Article  Google Scholar 

  22. Hornik T, Zhong QC (2010) H∞ repetitive voltage control of grid-connected inverters with a frequency dynamic mechanism. IET Power Electron 3(6):925–935

    Article  Google Scholar 

  23. Lei Q, Yang S and Peng FZ (2010) Multi-loop control algorithms for seamless transition of grid-connected inverter [C]. 2010 Twenty-fifth annual IEEE applied power electronics conference and exposition (APEC), Palm Springs, CA, pp. 844–848

  24. Srinivas VL, Singh B, Mishra S (2020) seamless mode transition technique for virtual synchronous generators and method thereof. IEEE Trans Industr Inf 16(8):5254–5266

    Article  Google Scholar 

  25. Li X, Zhang H, Shadmand MB, Balog RS (2017) Model predictive control of a voltage-source inverter with seamless transition between islanded and grid-connected operations. IEEE Trans Industr Electron 64(10):7906–7918

    Article  Google Scholar 

  26. Ramezani M, Li S, Musavi F, Golestan S (2020) Seamless transition of synchronous inverters using synchronizing virtual torque and flux linkage. IEEE Trans Industr Electron 67(1):319–328

    Article  Google Scholar 

  27. Souza M, Freitas L (2022) Grid-connected and seamless transition modes for microgrids: an overview of control methods, operation elements, and general requirements. IEEE Access 10:97802–97834

    Article  Google Scholar 

  28. Huang L, Xin H, Dörfler F (2020) H-control of grid-connected converters: design, objectives and decentralized stability certificates. IEEE Trans Smart Grid 11(5):3805–3816

    Article  Google Scholar 

  29. Dong J, Gong C, Chen H et al (2021) Secondary frequency regulation and stabilization method of islanded droop inverters based on integral leading compensator. Energy Rep 8:1718–1730

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the following agency for the support: Supported by National Key Research and Development Project (Grant No. 2018YFB1503000, 2018YFB1503001) and Shanghai Science and Technology Commission Program (Grant No. 21DZ1207300).

Funding

Funding supporting this paper are from public R&D fund of China rather than personal support.

Author information

Authors and Affiliations

Authors

Contributions

Dr. J.D. are responsible for the writing, and experiment design of the paper. Mr.C.G, J.B. and L.Z. are responsible for the project support of the paper. Professor Z.W. is responsible for the supervision of the whole project, research and lab.

Corresponding author

Correspondence to Zhixin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The paper is ethical approval and has no relationship with human and animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Abbreviation and variable list

PLL

Phase lock loop

HIL

Hard ware in the loop

PCC

Point of common coupling

I cc

Circling current among inverters

R v

Dynamic virtual resistance

R s

Initial value of virtual resistance

R 0

Eventual value of virtual resistance

τ

Time constant of proposed method

t 0

Initial time for mode transition

u * c,dq

Input reference of inner voltage and current loop

ũ * c,dq

Output voltage reference from droop loop

i 2,dq

Output current of the inverter

L v

Virtual inductance

Guref(s)

Transfer function from voltage reference to output voltage in voltage-oriented scheme

Zo(s)

Output impedance in voltage-oriented scheme

Yo(s)

Output conduction in current-oriented scheme

Giref(s)

Transfer function from current reference to output current in current-oriented scheme

L 1

Machine side inductor in LCL filter

L 2

Grid side inductor in LCL filter

C 1

Capacitor in LCL filter

i 1,dq

Current on L1

i 2,dq

Current on L2

u c,dq

Voltage on C1

u s,dq

Output voltage behind the IGBT bridge

u pcc,dq

Voltage on PCC

x filt

State space variable for the LCL filter

A f , B f1 , B f2

Parameter matrices for state space model of LCL filter

k pin

Proportional gain for the current loop from inner loop

k po

Proportional gain for the voltage loop from inner loop

k io

Integral gain for the voltage loop from inner loop

i * 1,dq

Current reference for current loop from inner loop

x s

State space variable for inner loop controller

As, Bs1, Bs2, Cs, Ds1, Ds2

Parameter matrices for inner loop controller

T hpf

Time constant of high pass filter in virtual impedance method

x v

State space variable for virtual impedance loop

Av, Bv1, Bv2, Cv, Dv1, Dv2

Parameter matrices for virtual impedance loop

n Q

Reactive power droop coefficient

n P

Active power droop coefficient

Q o

Reactive power output

P o

Active power output

T lfp

Time constant of low pass filter from droop loop

x dq

State space variable for droop loop

A pq , B pq , C pq

Parameter matrices for droop loop

[Ps, Qs]

Power reference array for grid-connected mode

Appendix B Transfer function in Sect. 3

For voltage-oriented mode controller

$$ \begin{gathered} G_{{\text{u}}}^{{{\text{ref}}}} \left( s \right) = \frac{{c_{1} s + c_{0} }}{{n_{4} s^{4} + n_{3} s^{3} + n_{2} s^{2} + n_{1} s + n_{0} }} \hfill \\ Z_{{\text{o}}} \left( s \right) = \frac{{m_{3} s^{3} + m_{2} s^{2} + m_{1} s + m_{0} }}{{n_{4} s^{4} + n_{3} s^{3} + n_{2} s^{2} + n_{1} s + n_{0} }} \hfill \\ \qquad + \left( {L_{2} + L_{{\text{v}}} } \right)s + r_{2} + r_{{\text{v}}} \hfill \\ \end{gathered} $$

where,

$$ \begin{gathered} c_{1} = k_{{{\text{pin}}}} k_{{{\text{po}}}} \hfill \\ c_{0} = k_{{{\text{pin}}}} k_{{{\text{io}}}} \hfill \\ m_{3} = L_{1} T_{{\text{s}}} \hfill \\ m_{2} = L_{1} + T_{{\text{s}}} k_{{{\text{pin}}}} + T_{{\text{s}}} r_{1} \hfill \\ m_{1} = r_{1} \hfill \\ m_{0} = 0 \hfill \\ n_{4} = C_{1} L_{1} T_{{\text{s}}} \hfill \\ n_{3} = C_{1} L_{1} + C_{1} T_{{\text{s}}} k_{{{\text{pin}}}} + C_{1} T_{{\text{s}}} r_{1} \hfill \\ n_{2} = C_{1} k_{{{\text{pin}}}} + C_{1} r_{1} \hfill \\ n_{1} = k_{{{\text{pin}}}} k_{{{\text{po}}}} \hfill \\ n_{0} = k_{{{\text{pin}}}} k_{{{\text{io}}}} \hfill \\ \end{gathered} $$

And Ts is the control period time of inner PWM. For current-oriented mode controller

$$ \begin{gathered} G_{I}^{{{\text{ref}}}} \left( s \right) = \frac{{a_{1} s + a_{0} }}{{q_{5} s^{5} + q_{4} s^{4} + q_{3} s^{3} + q_{2} s^{2} + q_{1} s + q_{0} }} \hfill \\ Y_{{\text{o}}} \left( s \right) = \frac{{p_{4} s^{4} + p_{3} s^{3} + p_{2} s^{2} + p_{1} s + p_{0} }}{{q_{5} s^{5} + q_{4} s^{4} + q_{3} s^{3} + q_{2} s^{2} + q_{1} s + q_{0} }} \hfill \\ \end{gathered} $$

where,

$$ \begin{aligned} a_{1} = & R_{{\text{v}}} k_{{\text{p}}} \\ a_{0} = & R_{{\text{v}}} k_{{\text{i}}} \\ p_{4} = & C_{1} L_{1} R_{{\text{v}}} T_{{\text{s}}} \\ p_{3} = & L_{1} T_{{\text{s}}} + C_{1} L_{1} R_{{\text{v}}} + C_{1} R_{{\text{v}}} T_{{\text{s}}} r_{1} \\ p_{2} = & L_{1} + R_{{\text{v}}} T_{{\text{s}}} + T_{{\text{s}}} r_{1} + C_{1} R_{{\text{v}}} r_{1} \\ p_{1} = & r_{1} \\ p_{0} = & 0 \\ \end{aligned} $$
$$ \begin{aligned} q_{5} = & C_{1} L_{1} L_{2} R_{{\text{v}}} T_{{\text{s}}} \\ q_{4} = & L_{1} L_{2} T_{{\text{s}}} + C_{1} L_{1} L_{2} R_{{\text{v}}} + C_{1} L_{1} R_{{\text{v}}} T_{{\text{s}}} r_{2} + C_{1} L_{2} R_{{\text{v}}} T_{{\text{s}}} r_{1} \\ q_{3} = & L_{1} L_{2} + L_{1} R_{{\text{v}}} T_{{\text{s}}} + L_{2} R_{{\text{v}}} T_{{\text{s}}} + L_{1} T_{{\text{s}}} r_{2} + L_{2} T_{{\text{s}}} r_{1} + \\ & C_{1} L_{1} R_{{\text{v}}} r_{2} + C_{1} L_{2} R_{{\text{v}}} r_{1} + C_{1} R_{{\text{v}}} T_{{\text{s}}} r_{1} r_{2} \\ q_{2} = & L_{1} r_{2} + L_{2} r_{1} + L_{1} R_{{\text{v}}} + L_{2} R_{{\text{v}}} + \\ & R_{{\text{v}}} T_{{\text{s}}} r_{1} + R_{{\text{v}}} T_{{\text{s}}} r_{2} + T_{{\text{s}}} r_{1} r_{2} + C_{1} R_{{\text{v}}} r_{1} r_{2} \\ q_{1} = & R_{{\text{v}}} k_{{\text{p}}} + R_{{\text{v}}} r_{1} + R_{{\text{v}}} r_{2} + r_{1} r_{2} \\ q_{0} = & R_{{\text{v}}} k_{{\text{i}}} \\ \end{aligned} $$

Appendix C Parameter description in Sect. 4.1

Define the following matrix for simple.

$$ J_{2} = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right),\;K_{2} = \left( {\begin{array}{*{20}c} 0 & 1 \\ { - 1} & 0 \\ \end{array} } \right) $$

From Eq. (7)

$$ A_{{\text{f}}} = \left( {\begin{array}{*{20}c} { - \frac{{r_{1} }}{{L_{1} }}J_{2} - \omega K_{2} } & { - \frac{1}{{L_{1} }}J_{2} } & {0_{2 \times 2} } \\ {\frac{1}{{C_{1} }}J_{2} } & { - \omega K_{2} } & { - \frac{1}{{C_{1} }}J_{2} } \\ {0_{2 \times 2} } & {\frac{1}{{L_{1} }}J_{2} } & { - \frac{{r_{2} }}{{L_{2} }}J_{2} - \omega K_{2} } \\ \end{array} } \right) $$
$$ B_{{{\text{f}}1}} = \left( {\begin{array}{*{20}c} {\frac{1}{{L_{1} }}J_{2} } \\ {0_{2 \times 2} } \\ {0_{2 \times 2} } \\ \end{array} } \right),\;B_{{{\text{f2}}}} = \left( {\begin{array}{*{20}c} {0_{2 \times 2} } \\ {0_{2 \times 2} } \\ { - \frac{1}{{L_{2} }}J_{2} } \\ \end{array} } \right) $$

From Eq. (8)

$$ \begin{gathered} D_{{{\text{aux}}1}} = k_{{{\text{pin}}}} J_{2} ,\;D_{{{\text{aux2}}}} = \left( {\begin{array}{*{20}c} { - k_{{{\text{pin}}}} J_{2} + \omega L_{1} K_{2} } & {J_{2} } & {0_{2 \times 2} } \\ \end{array} } \right) \hfill \\ A_{\sigma } = 0_{2 \times 2} ,\;B_{\sigma 1} = k_{{{\text{io}}}} J_{2} ,\;B_{\sigma 2} = \left( {\begin{array}{*{20}c} {0_{2 \times 2} } & {0_{2 \times 2} } & {0_{2 \times 2} } \\ \end{array} } \right) \hfill \\ C_{\sigma } = J_{2} ,\;D_{\sigma 1} = k_{{{\text{po}}}} J_{2} ,\;D_{\sigma 2} = \left( {\begin{array}{*{20}c} {0_{2 \times 2} } & {\omega C_{1} K_{2} } & {J_{2} } \\ \end{array} } \right) \hfill \\ D_{01} = J_{2} ,\;D_{02} = \left( {\begin{array}{*{20}c} {0_{2 \times 2} } & { - J_{2} } & {0_{2 \times 2} } \\ \end{array} } \right) \hfill \\ \end{gathered} $$

From Eq. (9)

$$ \begin{gathered} \omega_{{{\text{hpf}}}} = \frac{1}{{T_{{{\text{hpf}}}} }} \hfill \\ A_{{\text{v}}} = - \omega_{{{\text{hpf}}}} J_{2} ,\;B_{{{\text{v}}1}} = 0_{2 \times 2} ,\;B_{{{\text{v2}}}} = \left( {\begin{array}{*{20}c} {0_{2 \times 2} } & {0_{2 \times 2} } & {J_{2} } \\ \end{array} } \right) \hfill \\ C_{{\text{v}}} = - L_{{\text{v}}} \omega_{{{\text{hpf}}}}^{2} J_{2} ,\;D_{{{\text{v}}1}} = J_{2} , \hfill \\ D_{{{\text{v}}2}} = \left( {\begin{array}{*{20}c} {0_{2 \times 2} } & {0_{2 \times 2} } & {L_{{\text{v}}} \omega_{{{\text{hpf}}}} J_{2} - R_{{\text{v}}} J_{2} - \omega L_{{\text{v}}} K_{2} } \\ \end{array} } \right) \hfill \\ \end{gathered} $$

From Eq. (10)

$$ \begin{gathered} \omega_{{{\text{lpf}}}} = \frac{1}{{T_{{{\text{lpf}}}} }} \hfill \\ A_{{{\text{pq}}}} = - \omega_{{{\text{lpf}}}} J_{2} , \hfill \\ B_{{{\text{pq}}}} = 1.5\left( {\begin{array}{*{20}c} {0_{2 \times 2} } & {I_{d} J_{2} + I_{q} K_{2} } & {\left( {\begin{array}{*{20}c} {U_{d} } & {U_{q} } \\ {U_{q} } & { - U_{d} } \\ \end{array} } \right)} \\ \end{array} } \right) \hfill \\ C_{{{\text{pq}}}} = \left( {\begin{array}{*{20}c} 0 & { - n_{{\text{Q}}} } \\ 0 & 0 \\ { - n_{{\text{P}}} } & 0 \\ \end{array} } \right) \hfill \\ \end{gathered} $$

Ainv is gotten by state space expansion for the sake of simplicity.

$$ \begin{gathered} A_{2} = A_{{\text{f}}} + B_{{{\text{f}}1}} D_{{{\text{aux}}2}} \hfill \\ B_{21} = B_{{{\text{f}}1}} D_{{{\text{aux1}}}} ,\;B_{22} = B_{{{\text{f2}}}} \hfill \\ A_{3} = \left( {\begin{array}{*{20}c} {A_{2} + B_{21} \left( {D_{\sigma 1} D_{02} + D_{\sigma 2} } \right)} & {B_{21} C_{\sigma } } \\ {B_{\sigma 1} D_{02} + B_{\sigma 2} } & {A_{\sigma } } \\ \end{array} } \right), \hfill \\ B_{31} = \left( {\begin{array}{*{20}c} {B_{21} D_{\sigma 1} D_{01} } \\ {B_{\sigma 1} D_{01} } \\ \end{array} } \right),\;B_{32} = \left( {\begin{array}{*{20}c} {B_{22} } \\ {0_{2 \times 2} } \\ \end{array} } \right), \hfill \\ D_{3} = \left( {\begin{array}{*{20}c} {D_{{{\text{v1}}}} } & {0_{2 \times 2} } \\ \end{array} } \right) \hfill \\ \end{gathered} $$
$$ \begin{gathered} A_{4} = \left( {\begin{array}{*{20}c} {A_{3} + B_{31} D_{3} } & {B_{31} C_{{\text{v}}} } \\ {B_{{{\text{v1}}}} } & {A_{{\text{v}}} } \\ \end{array} } \right) \hfill \\ B_{41} = \left( {\begin{array}{*{20}c} {B_{31} D_{{{\text{v2}}}} } \\ {B_{{{\text{v2}}}} } \\ \end{array} } \right),B_{42} = \left( {\begin{array}{*{20}c} {B_{32} } \\ {0_{2 \times 2} } \\ \end{array} } \right), \hfill \\ B_{5} = \left( {\begin{array}{*{20}c} {B_{{{\text{pq}}}} } & {0_{2 \times 2} } & {0_{2 \times 2} } \\ \end{array} } \right), \hfill \\ A_{5} = \left( {\begin{array}{*{20}c} {A_{4} } & {B_{41} C_{{{\text{pq}}}} } \\ {B_{5} } & {A_{{{\text{pq}}}} } \\ \end{array} } \right), \hfill \\ A_{{{\text{inv}}}} = A_{5} \hfill \\ \end{gathered} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Gong, C., Bao, J. et al. Dynamic virtual resistance-based droop control for seamless transition operation of multi-parallel microgrid inverters. Electr Eng 105, 1163–1177 (2023). https://doi.org/10.1007/s00202-022-01723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01723-0

Keywords

Navigation