Skip to main content
Log in

Control of an active magnetic bearing system using swarm intelligence-based optimization techniques

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this manuscript, to control and operate an open loop unstable active magnetic bearing (AMB) system, first a closed loop active magnetic bearing system is proposed. This proposed close-loop contains an algorithm-driven intelligently optimized PID controller, a power amplifier, a position sensor and the fabricated AMB system. Development of a hardware model of proposed AMB system is carried out in laboratory. Using its constructional parameters and after performing some experimental observations, a linearized open loop transfer function is determined by implementing mathematical linearization technique. For a nominal point of operation, the gain variables of PID controller are calculated on the basis of four different evaluation indexes using, firefly algorithm, grasshopper optimization algorithm and artificial bee colony optimization algorithm. These evaluation indexes are: integral of absolute error, integral of squared error, integral of time multiplied absolute error and integral of time multiplied squared error. Further, a comparison among these optimization techniques is realized on three scale: transient state performance, observed statistical data and time taken in execution of algorithm. The efficacy and utility of the optimization techniques are demonstrated by computational calculations and a thorough study of the acquired data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Castellanos Molina LM, Bonfitto A, Galluzzi R (2021) Offset-Free Model Predictive Control for a cone-shaped active magnetic bearing system. Mechatronics 78:102612. https://doi.org/10.1016/j.mechatronics.2021.102612

    Article  Google Scholar 

  2. Schweitzer G, Maslen EH (2009) Magnetic bearings: theory, design, and application to rotating machinery, vol 1. Springer, Berlin

    Google Scholar 

  3. Schweitzer G, Bleuler H, Traxler A (1994) Basics, properties and applications of active magnetic bearings. Act Magn Bear 210:1–112

    Google Scholar 

  4. Schweitzer G (2002) Active magnetic bearings-chances and limitations. In: 6th international conference on rotor dynamics, pp 1–14

  5. Hoshi H, Shinshi T, Takatani S (2006) Third-generation blood pumps with mechanical noncontact magnetic bearings. Artif Organs 30(5):324–338

    Article  Google Scholar 

  6. Akamatsu T, Nakazeki T, Itoh H (1992) Centrifugal blood pump with a magnetically suspended impeller. Artif Organs 16(3):305–308

    Article  Google Scholar 

  7. Wroblewski AC, Sawicki JT, Pesch AH (2012) Rotor model updating and validation for an active magnetic bearing based high-speed machining spindle. J Eng Gas Turbines Power. https://doi.org/10.1115/1.4007337

    Article  Google Scholar 

  8. Smirnov A, Uzhegov N, Sillanpää T, Pyrhönen J, Pyrhönen O (2017) High-speed electrical machine with active magnetic bearing system optimization. IEEE Trans Ind Electron 64(12):9876–9885

    Article  Google Scholar 

  9. Zhang C, Tseng KJ (2013) Design and control of a novel flywheel energy storage system assisted by hybrid mechanical-magnetic bearings. Mechatronics 23(3):297–309. https://doi.org/10.1016/j.mechatronics.2013.01.008

    Article  Google Scholar 

  10. Bangcheng H, Shiqiang Z, Xi W, Qian Y (2011) Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application. IEEE Trans Magn 48(6):1959–1966

    Article  Google Scholar 

  11. Zhang K, Zhu R, Zhao (2002) Experimental research on a momentum wheel suspended by active magnetic bearings. In: Proc. 8th ISMB, Mito

  12. Masuzawa T, Ezoe S, Kato T, Okada Y (2003) Magnetically suspended centrifugal blood pump with an axially levitated motor. Artif Organs 27(7):631–638

    Article  Google Scholar 

  13. Jiang D et al (2020) Novel topologies of power electronics converter as active magnetic bearing drive. IEEE Trans Ind Electron 8(2):34833–34841. https://doi.org/10.1109/ACCESS.2020.2974765

    Article  Google Scholar 

  14. Chen M, Knospe CR (2005) Feedback linearization of active magnetic bearings: current-mode implementation. IEEE/ASME Trans Mechatron. https://doi.org/10.1109/TMECH.2005.859824

    Article  Google Scholar 

  15. Debnath S, Biswas PK, Laldingliana J (2017) Analysis and simulation of PWM based power amplifier for single axis Active Magnetic Bearing (AMB). In: 2017 IEEE Transportation Electrification Conference (ITEC-India), pp 1–5

  16. Larsonneur R, Siegwart R, Traxler A (1992) Active magnetic bearing control strategies for solving vibration problems in industrial rotor systems

  17. Knospe CR (2007) Active magnetic bearings for machining applications. Control Eng Pract. https://doi.org/10.1016/j.conengprac.2005.12.002

    Article  Google Scholar 

  18. Mazenc F, de Queiroz MS, Malisoff M, Gao F (2006) Further results on active magnetic bearing control with input saturation. IEEE Trans Control Syst Technol 14(5):914–919

    Article  Google Scholar 

  19. Turek M, Březina T (2007) State controller of active magnetic bearing. https://doi.org/10.1007/978-3-540-73956-2_19

  20. Zhang P, Zhang J (2022) Lower limb exoskeleton robots’ dynamics parameters identification based on improved beetle swarm optimization algorithm. Robotica 40(8):2716–2731. https://doi.org/10.1017/S0263574721001922

    Article  Google Scholar 

  21. Luo X, Yuan Y, Chen S, Zeng N, Wang Z (2022) Position-transitional particle swarm optimization-incorporated latent factor analysis. IEEE Trans Knowl Data Eng 34(8):3958–3970. https://doi.org/10.1109/TKDE.2020.3033324

    Article  Google Scholar 

  22. Lin C-T, Jou C-P (2000) GA-based fuzzy reinforcement learning for control of a magnetic bearing system. IEEE Trans Syst Man Cybern Part B 30(2):276–289. https://doi.org/10.1109/3477.836376

    Article  Google Scholar 

  23. Couzon P-Y, Der Hagopian J (2007) Neuro-fuzzy active control of rotor suspended on active magnetic bearing. J Vib Control 13(4):365–384

    Article  MATH  Google Scholar 

  24. Shata AMA-H, Hamdy RA, Abdelkhalik AS, El-Arabawy I (2018) A fractional order PID control strategy in active magnetic bearing systems. Alex Eng J 57(4):3985–3993. https://doi.org/10.1016/j.aej.2018.01.020

    Article  Google Scholar 

  25. Dhyani A, Panda MK, Jha B (2018) Moth-flame optimization-based fuzzy-PID controller for optimal control of active magnetic bearing system. Iran J Sci Technol Trans Electr Eng 42(4):451–463

    Article  Google Scholar 

  26. Bo W, Haipeng G, Hao L, Wei Z (2021) Particle swarm optimization-based fuzzy PID controller for stable control of active magnetic bearing system. J Phys Conf Ser 1888(1):12022

    Article  Google Scholar 

  27. Debnath S, Biswas PK (2021) Design, analysis, and testing of I-type electromagnetic actuator used in single-coil active magnetic bearing. Electr Eng 103(1):183–194. https://doi.org/10.1007/s00202-020-01071-x

    Article  Google Scholar 

  28. Laldingliana J, Biswas PK, Debnath S (2017) Magnetic analysis of single-axis active magnetic bearing using ANSYS base. environment, vol 4, no 11, pp 169–174

  29. Debnath S, Biswas PK (2021) Advanced magnetic bearing device for high-speed applications with an I-type electromagnet. Electr Power Components Syst 48(16–17):1862–1874

    Google Scholar 

  30. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press

    Google Scholar 

  31. Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23–24):2325–2336

    Article  Google Scholar 

  32. Abd-Elazim SM, Ali ES (2018) Firefly algorithm-based load frequency controller design of a two area system composing of PV grid and thermal generator. Electr Eng 100(2):1253–1262. https://doi.org/10.1007/s00202-017-0576-5

    Article  Google Scholar 

  33. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms, pp 169–178

  34. Yang X-S (2010) Firefly algorithm, Levy flights and global optimization. In: Research and development in intelligent systems XXVI. Springer, pp 209–218

  35. Yang X-S (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29(2):175–184

    Article  Google Scholar 

  36. Ezugwu AE, Akutsah F (2018) An improved firefly algorithm for the unrelated parallel machines scheduling problem with sequence-dependent setup times. IEEE Access 6:54459–54478

    Article  Google Scholar 

  37. Yang X-S, Hosseini SSS, Gandomi AH (2012) Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 12(3):1180–1186

    Article  Google Scholar 

  38. Severin S, Rossmann J (2012) A comparison of different metaheuristic algorithms for optimizing blended PTP movements for industrial robots. In: International conference on intelligent robotics and applications, pp 321–330

  39. Chatterjee A, Mahanti GK (2013) Minimization in variations of different parameters in different φ planes of a small-size concentric ring array antenna using firefly algorithm. Ann Telecommun des télécommunications 68(5):299–306

    Article  Google Scholar 

  40. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  41. Luo J, Chen H, Xu Y, Huang H, Zhao X (2018) An improved grasshopper optimization algorithm with application to financial stress prediction. Appl Math Model 64:654–668

    Article  MathSciNet  MATH  Google Scholar 

  42. Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805–820

    Article  Google Scholar 

  43. Mokeddem D (2021) Parameter extraction of solar photovoltaic models using enhanced Levy flight based grasshopper optimization algorithm. J Electr Eng Technol 16(1):171–179

    Article  Google Scholar 

  44. Taher MA, Kamel S, Jurado F, Ebeed M (2019) Modified grasshopper optimization framework for optimal power flow solution. Electr Eng 101(1):121–148. https://doi.org/10.1007/s00202-019-00762-4

    Article  Google Scholar 

  45. Ewees AA, Gaheen MA, Yaseen ZM, Ghoniem RM (2022) Grasshopper optimization algorithm with crossover operators for feature selection and solving engineering problems. IEEE Access 10:23304–23320. https://doi.org/10.1109/ACCESS.2022.3153038

    Article  Google Scholar 

  46. Xu Z et al (2021) Spiral motion mode embedded grasshopper optimization algorithm: design and analysis. IEEE Access 9:71104–71132. https://doi.org/10.1109/ACCESS.2021.3077616

    Article  Google Scholar 

  47. Gozde H (2015) Comparative analysis of swarm optimization-based control method for direct matrix converter. Electr Eng 97(3):181–193. https://doi.org/10.1007/s00202-014-0327-9

    Article  Google Scholar 

  48. Zhou H et al (2020) An improved Grasshopper optimizer for global tasks. Complexity 2020:1–23

    Article  Google Scholar 

  49. Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A (2021) Grasshopper optimization algorithm: theory, variants, and applications. IEEE Access 9:50001–50024. https://doi.org/10.1109/ACCESS.2021.3067597

    Article  Google Scholar 

  50. Abualigah L, Diabat A (2020) A comprehensive survey of the Grasshopper optimization algorithm: results, variants, and applications. Neural Comput Appl 32:1–24

    Google Scholar 

  51. Zhao R, Ni H, Feng H, Song Y, Zhu X (2019) An improved grasshopper optimization algorithm for task scheduling problems. Int J Innov Comput Inf Control 15(5):1967–1987

    Google Scholar 

  52. Liang H, Jia H, Xing Z, Ma J, Peng X (2019) Modified grasshopper algorithm-based multilevel thresholding for color image segmentation. IEEE Access 7:11258–11295

    Article  Google Scholar 

  53. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer

  54. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014

    Article  Google Scholar 

  55. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57. https://doi.org/10.1007/s10462-012-9328-0

    Article  Google Scholar 

  56. Eroğlu H, Aydin M (2018) Solving power transmission line routing problem using improved genetic and artificial bee colony algorithms. Electr Eng 100(3):2103–2116. https://doi.org/10.1007/s00202-018-0688-6

    Article  Google Scholar 

  57. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Frankl Inst 346(4):328–348

    Article  MathSciNet  MATH  Google Scholar 

  58. Rajasekhar A, Jatoth RK, Abraham A (2014) Design of intelligent PID/PIλDμ speed controller for chopper fed DC motor drive using opposition based artificial bee colony algorithm. Eng Appl Artif Intell 29:13–32

    Article  Google Scholar 

  59. Mernik M, Liu S-H, Karaboga D, Črepinšek M (2015) On clarifying misconceptions when comparing variants of the artificial bee colony algorithm by offering a new implementation. Inf Sci (NY) 291:115–127

    Article  MathSciNet  MATH  Google Scholar 

  60. Karaboga D, Akay B (2007) Artificial bee colony (ABC) algorithm on training artificial neural networks. In: 2007 IEEE 15th Signal Processing and Communications Applications, pp 1–4

  61. Ozturk A, Cobanli S, Erdogmus P, Tosun S (2010) Reactive power optimization with artificial bee colony algorithm. Sci Res Essays 5(19):2848–2857

    Google Scholar 

  62. Samanta S, Chakraborty S (2011) Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intell 24(6):946–957

    Article  Google Scholar 

  63. Suri B (2011) Review of artificial bee colony algorithm to software testing. Int J Res Rev Comput Sci 2(3):706

    Google Scholar 

  64. Ercin O, Coban R (2011) Comparison of the artificial bee colony and the bees algorithm for pid controller tuning. In: 2011 international symposium on innovations in intelligent systems and applications, pp 595–598

  65. Tavazoei MS (2010) Notes on integral performance indices in fractional-order control systems. J Process Control 20(3):285–291

    Article  Google Scholar 

  66. Dorf RC, Bishop RH (2008) Modern control systems. Pearson Prentice Hall

    MATH  Google Scholar 

  67. Astrom K (1995) PID controllers, theory, Des. tuning

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraj Gupta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Debnath, S. & Biswas, P.K. Control of an active magnetic bearing system using swarm intelligence-based optimization techniques. Electr Eng 105, 935–952 (2023). https://doi.org/10.1007/s00202-022-01707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01707-0

Keywords

Navigation