Skip to main content
Log in

Moth-Flame Optimization-Based Fuzzy-PID Controller for Optimal Control of Active Magnetic Bearing System

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the application of moth-flame optimization (MFO) algorithm for the optimal control of an active magnetic bearing (AMB) system is studied. Active magnetic bearings are known to be highly nonlinear multivariable systems. An AMB system is used in motors, generators, turbines and various other machineries in different industries to provide an active suspension to the rotor shafts. The comparison of controlled responses of various closed-loop systems resulting from the use of conventional proportional–integral–derivative (PID) and fuzzy logic-based intelligent control strategies is discussed. The heuristic MFO algorithm is applied to optimize the scaling factors of the fuzzy-PID controller. The proposed controller performance is superior as compared to the very famous industrial PID and fuzzy-PID controllers with respect to various time response parameters. A comparative study with other heuristic algorithms such as PSO and SA is also performed. Three performance indices, namely integral square error, integral time absolute of error (ITAE) and integral time absolute of error plus Integral time absolute of control action (ITAE + ITAU), are chosen for designing the optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Allam D, Yousri DA, Eteiba MB (2016) Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm. Energy Convers Manag 123:535–548

    Article  Google Scholar 

  • Balini HMNK, Scherer CW, Witte J (2011) Performance enhancement for AMB systems using unstable H∞ controllers. IEEE Trans Control Syst Technol 19(6):1479–1492

    Article  Google Scholar 

  • Balini HMNK, Witte J, Scherer CW (2012) Synthesis and implementation of gain-scheduling and LPV controllers for an AMB system. Automatica 48(3):521–527

    Article  MathSciNet  Google Scholar 

  • Bleuler H et al (2009) Magnetic bearings: theory, design, and application to rotating machinery. Springer, Berlin

    Google Scholar 

  • Ceylan O (2016, November) Harmonic elimination of multilevel inverters by moth-flame optimization algorithm. In: IEEE 2016 international symposium on industrial electronics (INDEL), pp 1–5

  • Chen SC, Nguyen VS, Le DK, Nam NTH (2014) Active magnetic bearing system equipped with a fuzzy logic controller. J Sci Eng Technol 10(2):69–80

    Google Scholar 

  • de Queiroz MS, Dawson DM (1996) Nonlinear control of active magnetic bearings: a backstepping approach. IEEE Trans Control Syst Technol 4(5):545–552

    Article  Google Scholar 

  • Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  • Du H, Zhang N, Ji JC, Gao W (2010) Robust fuzzy control of an active magnetic bearing subject to voltage saturation. IEEE Trans Control Syst Technol 18(1):164–169

    Article  Google Scholar 

  • Dussaux M (1990, June) Status of the industrial applications of the active magnetic bearings technology. In: ASME 1990 international gas turbine and aeroengine congress and exposition. American Society of Mechanical Engineers, pp V005T14A016–V005T14A016

  • Eberhart R, Kennedy J (1995, October) A new optimizer using particle swarm theory. In: Micro machine and human science, 1995. MHS’95. Proceedings of the sixth international symposium on. IEEE, pp 39–43

  • El-Fergany AA (2018) Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer. Renew Energy 119:641–648

    Article  Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Intelligent decision making through a simulation of evolution. Syst Res Behav Sci 11(4):253–272

    Article  Google Scholar 

  • Gosiewski Z, Mystkowski A (2008) Robust control of active magnetic suspension: analytical and experimental results. Mech Syst Signal Process 22(6):1297–1303

    Article  Google Scholar 

  • Guillemin P (1996) Fuzzy logic applied to motor control. IEEE Trans Ind Appl 32(1):51–56

    Article  Google Scholar 

  • Hafez AI, Zawbaa HM, Emary E, Hassanien AE (2016, August) Sine cosine optimization algorithm for feature selection. In: INnovations in Intelligent SysTems and Applications (INISTA), 2016 international symposium on. IEEE, pp 1–5

  • Heidari AA, Pahlavani P (2017) An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl Soft Comput 60:115–134

    Article  Google Scholar 

  • Hellendoorn H, Reinfrank M (1993) An introduction to fuzzy control. Springer, Berlin

    MATH  Google Scholar 

  • Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  • Hsu CT, Chen SL (2003) Nonlinear control of a 3-pole active magnetic bearing system. Automatica 39(2):291–298

    Article  MathSciNet  Google Scholar 

  • Hu S, Zhang Y, Yin X, Du Z (2013) T–S fuzzy-model-based robust stabilization for a class of nonlinear discrete-time networked control systems. Nonlinear Anal Hybrid Syst 8:69–82

    Article  MathSciNet  Google Scholar 

  • Ibrahim A, Ahmed A, Hussein S, Hassanien AE (2018, February) Fish image segmentation using Salp Swarm algorithm. In: International conference on advanced machine learning technologies and applications. Springer, Cham, pp 42–51

    Chapter  Google Scholar 

  • Jangir N, Pandya MH, Trivedi IN, Bhesdadiya RH, Jangir P, Kumar A (2016, March) Moth-flame optimization algorithm for solving real challenging constrained engineering optimization problems. In 2016 IEEE students’ conference on electrical, electronics and computer science (SCEECS), pp 1–5

  • Jastrzebski RP, Hynynen KM, Smirnov A (2010) H∞ control of active magnetic suspension. Mech Syst Signal Process 24(4):995–1006

    Article  Google Scholar 

  • Khalilpourazari S, Pasandideh SHR (2017) Multi-item EOQ model with nonlinear unit holding cost and partial backordering: moth-flame optimization algorithm. J Ind Prod Eng 34(1):42–51

    Google Scholar 

  • Li C, Li S, Liu Y (2016) A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting. Appl Intell 45(4):1166–1178

    Article  Google Scholar 

  • Madni SHH, Latiff MSA, Coulibaly Y (2017) Recent advancements in resource allocation techniques for cloud computing environment: a systematic review. Clust Comput 20(3):2489–2533

    Article  Google Scholar 

  • Maniezzo ACMDV (1992) Distributed optimization by ant colonies. In: Toward a practice of autonomous systems: proceedings of the first European conference on artificial life. MIT Press, p 134

  • Mendel JM, Mouzouris GC (1997) Designing fuzzy logic systems. IEEE Trans Circuits Syst II Analog Digital Signal Process 44(11):885–895

    Article  Google Scholar 

  • Meng XB, Gao XZ, Liu Y, Zhang H (2015) A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization. Expert Syst Appl 42(17):6350–6364

    Article  Google Scholar 

  • Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  • Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  • Nanda SJ (2016, September) Multi-objective moth flame optimization. In: 2016 international conference on Advances in computing, communications and informatics (ICACCI). IEEE, pp 2470–2476

  • Navale RL, Nelson RM (2010) Use of genetic algorithms to develop an adaptive fuzzy logic controller for a cooling coil. Energy Build 42(5):708–716

    Article  Google Scholar 

  • Noshadi A, Shi J, Lee WS, Shi P, Kalam A (2016a) Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system. Neural Comput Appl 27(7):2031–2046

    Article  Google Scholar 

  • Noshadi A, Shi J, Lee WS, Shi P, Kalam A (2016b) System identification and robust control of multi-input multi-output active magnetic bearing systems. IEEE Trans Control Syst Technol 24(4):1227–1239

    Article  Google Scholar 

  • Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11(8):5508–5518

    Article  Google Scholar 

  • Rechenberg I (1973) Evolution strategy: optimization of technical systems by means of biological evolution. Fromman-Holzboog, Stuttgart, p 104

    Google Scholar 

  • Reddy S, Panwar LK, Panigrahi BK, Kumar R (2017) Solution to unit commitment in power system operation planning using binary coded modified moth flame optimization algorithm (BMMFOA): a flame selection based computational technique. J Comput Sci 25:298–317

    MathSciNet  Google Scholar 

  • Savsani V, Tawhid MA (2017) Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems. Eng Appl Artif Intell 63:20–32

    Article  Google Scholar 

  • Schweitzer G (ed) (2012) Magnetic bearings: proceedings of the first international symposium. ETHG Zurich, Switzerland, June 6–8, 1988. Springer

  • Sobhan PV, Kumar GN, Amarnath J (2010, December) Rotor levitation by active magnetic bearings using fuzzy logic controller. In: Industrial electronics, control & robotics (IECR), 2010 international conference on. IEEE, pp 197–201

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  • Xie W, Duan J (2015) The design and simulation of fuzzy PID parameter self-tuning controller. Indones J Electr Eng Comput Sci 14(2):293–297

    MathSciNet  Google Scholar 

  • Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Beckington

    Google Scholar 

  • Yang XS (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bio-Inspir Comput 2(2):78–84

    Article  Google Scholar 

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  • Yıldız BS, Yıldız AR (2017) Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Mater Test 59(5):425–429

    Article  Google Scholar 

  • Zadeh LA (1996) Fuzzy sets. In: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh. pp 394–432

    Google Scholar 

  • Zawbaa HM, Emary E, Parv B, Sharawi M (2016, July) Feature selection approach based on moth-flame optimization algorithm. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 4612–4617

  • Zhang L, Mistry K, Neoh SC, Lim CP (2016) Intelligent facial emotion recognition using moth-firefly optimization. Knowl Based Syst 111:248–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhyani, A., Panda, M.K. & Jha, B. Moth-Flame Optimization-Based Fuzzy-PID Controller for Optimal Control of Active Magnetic Bearing System. Iran J Sci Technol Trans Electr Eng 42, 451–463 (2018). https://doi.org/10.1007/s40998-018-0077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-018-0077-1

Keywords

Navigation