Skip to main content
Log in

The effects of non-standard lightning impulse on electrical insulation: a review

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Equipment installed in a power system network has to tolerate impulse overvoltage throughout its life span. Lightning impulses are one of the primary reasons of this overvoltage. Hence, insulation of the power equipment is designed and tested with standard lightning impulse. However, in reality, various complex, oscillatory non-standard lightning impulse waveforms exist in natural lightning impulses. Therefore, for the better design of insulation of the power equipment, identification of the non-standard lightning impulse waveform is essential. This article presents a comprehensive review of the effects of non-standard lightning impulse voltage on the insulation of power equipment. This article will help to classify the non-standard lightning impulse waveforms and identify the parameters, generation circuit, and analysis of non-standard lightning impulse waveforms till the present day. Hence, the information presented in the article can be helpful for the insulation design of the power equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jana S, Biswas P K, Das U (2018) Numerical computational analysis of lightning energy storage system using single stage two level impulse generator. In: 2nd international conference on power, energy and environment: towards smart technology (ICEPE) (2018): 1–6

  2. Jana S, Biswas PK, Sain C (2022) Mathematical modeling of impulse Island controller to safely store the energy from high voltage lightning impulse. Energy Storage 2022:1–11. https://doi.org/10.1002/est2.325

    Article  Google Scholar 

  3. High Voltage Test Techniques Part 1: General Definitions and Test Requirements, Standard IS 2071–1, Indian Standard (2004)

  4. High-voltage Test Techniques-Part 1: General Definitions and Test Requirements, Standard IEC 60060–1, International Electrotechnical Commission (2010)

  5. High-Voltage Test Techniques: IEC Publication 60 (1962)

  6. Venkatesan S, Usa S, Kumar KU (2002) Unconditionally sequential approach to calculate the impulse voltages strength of air for non-standard impulse voltages. In: Proceedings IEEE/PES Asia Pacific transmission and distribution conference and exhibition. 2: 1236–1240

  7. Okabe S, Yuasa S, Kaneko S (2007) Evaluation of breakdown characteristics of gas-insulated switchgear for non-standard lightning impulse waveforms -analysis and generation circuit of non-standard lightning impulse waveforms in actual field. IEEE Trans Dielectr Electr Insul 14(2):312–320

    Google Scholar 

  8. Ueta G, Wada J, Okabe S (2011) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms-. IEEE Trans Dielectr Electr Insul 18(5):1724–1733

    Google Scholar 

  9. Wada J, Ueta G, Okabe S (2013) Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms - method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms-. IEEE Trans Dielectr Electr Insul 20(2):505–514

    Google Scholar 

  10. Faria GH et al (2020) Lightning withstand of medium voltage switches and cut-out fuses considering standard and non-standard impulse shapes. IEEE Electr Insul Mag 36(4):47–55

    Google Scholar 

  11. Okabe S, Takami J (2008) Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse waveforms - method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms. IEEE Trans Dielectr Electr Insul 15(5):1288–1296

    Google Scholar 

  12. Bhuyan K, Chatterjee S (2010) Study of effects of standard and non-standard impulse waves on power transformer. In: Proc Power Electr Drives and Energy Syst Int Conf (2010): 1–4

  13. Bhuyan K, Chatterjee S (2015) Electric stresses on transformer winding insulation under standard and non-standard impulse voltages. Electric Power Sys Res 123:40–47

    Google Scholar 

  14. AIEE Committee Report (1934) Flashover voltages of insulators and gaps. Elect Eng 53(6):882–886

    Google Scholar 

  15. Carrus A, Funes LE (1984) Very short-tailed lightning double exponential wave generation techniques based on Marx circuit standard configurations. IEEE Trans. Power App Syst PAS- 103(4):782–787

    Google Scholar 

  16. Burrage LM, Veverka EF, McConnell BW (1987) Steep front short duration low voltage impulse performance of distribution transformers. IEEE Trans Power Del PWRD 2(4):1152–1156

    Google Scholar 

  17. Carrus A (1989) An inductance on the Marx generator tail branch. New technique for high efficiency laboratory reproduction of short time to Half value lightning impulses. IEEE Trans Power Del 4(1):90–94

    Google Scholar 

  18. Lux E, Miller DB, Kempkes DL (1989) The effect of steep-front short-duration pulses on polyethylene cable insulation. In: Proc IEEE Eng Info Tech in the Southeast 1989. vol 3, pp 1372–1376

  19. Shaw JH (1989) Instrumentation system used to determine the effects of steep front short duration impulses on electric power system Insulation. IEEE Trans Power Del 4(2):938–941

    Google Scholar 

  20. Aoshima Y, Miyake K (1989) Flashover characteristics of air gaps for short tail waves (Japanese). The Trans Ins Elect Eng Japan B 109(3):135–142

    Google Scholar 

  21. Miller DB, Lux AE, Barnes PR (1990) The effects of steep-front, short-duration impulses on power distribution components. IEEE Trans Power Del 5(2):708–714

    Google Scholar 

  22. Grzybowski S, Jacob PB (1990) The steep-front, short-duration pulse characteristics of distribution insulators with wood. IEEE Trans Power Del 5(3):1608–1616

    Google Scholar 

  23. Motoyama H (1996) Experimental study and analysis of breakdown characteristics of long air gaps with short tail lightning impulse. IEEE Trans Power Del 11(2):972–979

    Google Scholar 

  24. Carrus A et al (1999) Short tail lightning impulse behaviour of medium voltage line insulation. IEEE Trans Power Del 14(1):218–226

    Google Scholar 

  25. Venkatesan S, Ranjan PV, Ashokaraju D (2003) A comparative study on methods for evaluation of lightning impulse parameters. In: Proc Asia-Pacific Region Convergent Tech Conf (TENCON 2003), 2003. vol 4, pp 1562–1566

  26. Grzybowski S, Song Y, Kappenman J (2004) CFO voltage and V-t characteristic of 15 kV polymer suspension insulator under lightning and Steep front short duration impulses. In: Proc IEEE Int Symp Elect Insul Conf. pp 308–311

  27. Grzybowski S, Song S, Kappenman J (2004) Study on the electrical strength of distribution insulators under steep front, short-duration pulse. In: Proc Electr Insul Dielectr Phenomena Conf 2004. pp 643–646

  28. Ancajima A et al (2007) Breakdown characteristics of air spark-gaps stressed by standard and short-tail lightning impulses: experimental results and comparison with time to sparkover models. J Electrostatics 65(5–6):282–288

    Google Scholar 

  29. Braz CP et al (2014) Analysis of different procedures for the application of the disruptive effect model to distribution insulators Subject to short tail lightning impulses. Electr Power Syst Res 113:165–170

    Google Scholar 

  30. Ancajima A et al (2010) Behavior of MV insulators under lightning-induced overvoltages: experimental results and reproduction of volt-time characteristics by disruptive effect models. IEEE Trans Power Del 25(1):221–230

    Google Scholar 

  31. Lantharthong T et al (2014) Effect of waveform and impulse resistance on lightning performance in distribution system. In: Proc IEEE Int Conf Lightning Protection (ICLP). pp 1766–1769

  32. Wang X, Yu Z, He J (2014) Breakdown process experiments of 110- to 500-kV insulator strings under short tail lightning impulse. IEEE Trans Power Del 29(5):2394–2401

    Google Scholar 

  33. Yuan Z et al (2014) Experimental study and analysis of insulator breakdown characteristics with short-tail lightning impulse. J Int Council on Elect Eng 4(3):199–203

    Google Scholar 

  34. Sima W et al (2016) Impact of time parameters of lightning impulse on the breakdown characteristics of oil-paper insulation. High Volt 1(1):18–24

    Google Scholar 

  35. Yamamoto K, Masuda K, Sumi S (2018) Long-wave-tail current Generator to generate real winter lightning current. In: Proceedings of 34th international conference on lightning protection (ICLP). pp 1–5

  36. Xiao P et al (2018) Experimental study on the flashover characteristics of polluted insulators under short-tail lightning impulse waveform. In: Proc IEEE Int Conf High Volt Eng App (ICHVE). pp 1–4

  37. Zhao X et al (2018) Breakdown characteristics of a 220-kV composite insulator string under short tail lightning impulses based on the discharge current and images. IEEE Trans Power Del 33(6):3211–3217

    Google Scholar 

  38. Han Y et al (2018) Study on influencing factors of insulators flashover characteristics on the 110 kV true tower under the lightning impulse. IEEE Access 6:66536–66544

    Google Scholar 

  39. Okabe S et al (2009) Evaluation of breakdown characteristics of gas-insulated switchgear for non-standard lightning impulse waveforms -method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms-. IEEE Trans Dielectr Electr Insul 16(1):42–51

    Google Scholar 

  40. Koto M et al (1998) Insulation characteristics of GIS for non-standard lightning surge waveforms. In: Proc 8th Int Sym Gaseous Dielectr (1998). pp 547–553

  41. Okabe S et al (1999) Insulation characteristics of GIS for non-standard lightning surge waveforms < No-2: gas gaps and spacer surface >. In: Proc Eng Symp High Volt (1999). vol 3, pp 163–166

  42. Okabe S et al (2003) Analysis of non-standard lightning impulse voltage for actual substation and generation circuit (Japanese). IEEJ Trans Power Energy 123(2):175–180

    Google Scholar 

  43. Wada J, Ueta G, Okabe S (2012) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse WAVEFORMS - breakdown characteristics under double-frequency oscillation waveforms and single-frequency oscillation waveforms in the presence of bias voltage. IEEE Trans Dielectr Electr Insul 19(5):1799–1809

    Google Scholar 

  44. Ueta G, Wada J, Okabe S (2011) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - breakdown characteristics under single-frequency oscillation waveforms of 5.3 MHz to 20.0 MHz. IEEE Trans Dielectr Electr Insul 18(1):238–245

    Google Scholar 

  45. Wada J, Ueta G, Okabe S (2011) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms under non-uniform electric field - breakdown characteristics for Single-frequency oscillation waveforms. IEEE Trans Dielectr Electr Insul 18(2):640–648

    Google Scholar 

  46. Wada J, Ueta G, Okabe S (2011) Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms - breakdown characteristics under single-frequency oscillation waveforms and with bias voltages. IEEE Trans Dielectr Electr Insul 18(5):1759–1766

    Google Scholar 

  47. Wada J, Ueta G, Okabe S (2013) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - breakdown characteristics in the presence of bias voltages under non-uniform electric field. IEEE Trans Dielectr Electr Insul 20(1):112–121

    Google Scholar 

  48. Wada J et al (2014) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms -breakdown characteristics for double-frequency oscillation waveforms under non-uniform electric field. IEEE Trans Dielectr Electr Insul 21(2):617–626

    Google Scholar 

  49. Okabe S et al (2001) Insulation characteristics of GIS under non-standard lightning impulse oscillations - insulation characteristics under high frequency oscillations- (Japanese). T IEE Japan 121-B(11):1587–1593

    Google Scholar 

  50. Yokoi T, Kaneko S, Okabe S (2006) Insulation characteristics of CO2 gas for non-standard lightning impulse oscillations - insulation characteristics under single-frequency oscillations from 5.3 to 20 MHz- (Japanese). T IEE Japan 126(5):539–544

    Google Scholar 

  51. Kaneko S, Yokoi T, Okabe S (2006) Insulation characteristics of CO2 gas for non-standard lightning impulse oscillations - insulation characteristics under single-frequency oscillations from 1.3 to 4.0 MHz- (Japanese). IEEJ Trans PE 126(1):91–96

    Google Scholar 

  52. Kaneko S, Okabe S (2007) Insulation characteristics and its evaluation of N2 gas for non-standard lightning impulse waveforms (Japanese). IEEJ Trans PE 127(7):854–862

    Google Scholar 

  53. Okabe S, Yuasa S, Kaneko S (2008) Evaluation of breakdown characteristics of gas-insulated switchgear for non-standard lightning impulse waveforms - breakdown characteristics for non-standard lightning impulse waveforms associated with disconnector switching surges-. IEEE Trans Dielectr Electr Insul 15(3):721–729

    Google Scholar 

  54. Wada J, Ueta G, Okabe S (2013) Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms - breakdown characteristics under double-frequency oscillation waveforms and pressure-distance characteristics. IEEE Trans Dielectr Electr Insul 19(5):1810–1818

    Google Scholar 

  55. Jones AR (1954) Evaluation of the integration method for analysis of non-standard surge voltages. AIEE Trans 73:984–990

    Google Scholar 

  56. Shindo T, Suzuki T (1985) A new calculation method of breakdown voltage-time characteristics of long air gaps. IEEE Trans Power App Syst PAS- 104(6):1556–1563

    Google Scholar 

  57. Li Z, Kuffel R, Kuffel E (1986) Volt-time characteristics in air, SF6/AIR mixture and N2 for coaxial cylinder and rod-sphere gaps. IEEE Trans Elect Insul EI- 21(2):151–155

    Google Scholar 

  58. Darveniza M, Vlastos AE (1988) Generalised breakdown models and the integration method for predicting non-standard waveshape impulse strengths. In: Proc of Prop and Appl of Dielectr Mater Sec Int Conf (1988). vol 1, pp 284–287

  59. Darveniza M, Vlastos AE (1988) The generalized integration method for predicting impulse volt-time characteristics for non-standard wave shapes - a theoretical basis. IEEE Trans Electr Insul 23(3):373–381

    Google Scholar 

  60. Pigini A et al (1989) Performance of large air gaps under lightning overvoltages: experimental study and analysis of accuracy predetermination methods. IEEE Trans Power Del 4(2):1379–1392

    Google Scholar 

  61. Task Force 15.09 on Non-standard Lightning Voltage Waves, Lightning and Insulator Subcommittee of the T & D Committee (1994) Review of research on non-standard lightning voltage waves. IEEE Trans Power Del 9(4):1972–1981

    Google Scholar 

  62. Chowdhuri P et al (1994) The effects of non-standard lightning voltage waveshapes on the impulse strength of short air gaps. IEEE Trans Power Del 9(4):1991–1999

    Google Scholar 

  63. Chowdhuri P, Mishra AK, McConnell BW (1997) Volt-time characteristics of short air gaps under non-standard lightning voltage waves. IEEE Trans Power Del 12(1):470–476

    Google Scholar 

  64. Zhang XQ (2006) Study on corona characteristics under non-standard lightning impulses. Electr Eng 89:519–524

    Google Scholar 

  65. Ancajima A et al (2007) Optimal selection of disruptive effect models parameters for the reproduction of mv insulators volt-time characteristics under standard and non-standard lightning impulses. IEEE Lausanne Power Tech 760–765

  66. Aniserowicz K, Zielenkiewicz M (2007) Non-standard Lightning Protection Devices-A Criticism. In: Proc Int Conf Electr Contr Tech: 177–180.

  67. Bhuyan K, Chatterjee S (2008) Study of effect of standard and non-standard impulse waves on power equipments. In: Proc NCEEERE (2008). pp 1–6

  68. Yuvarajan M et al (2008) Behavior of LN2/ Paper composite insulating material under AC, standard and non-standard lightning impulse voltage. In: Proc Electr Insul Dielectr Phenomena Conf (2008). pp 641–644

  69. Kadir MZAA, Ahmad MH, Jasni J (2008) Effect of the non-standard lightning current and waveshape on lightning surge analysis. Asian J Appl Sci 1(2):168–176

    Google Scholar 

  70. Venkatesan S, Usa S (2010) Volt–time characteristics of small airgaps with hyperbolic model. Electr Power Syst Res 80(7):739–742

    Google Scholar 

  71. Braz P, Piantini A (2011) Analysis of the dielectric behavior of distribution insulators under non-standard lightning impulses voltages (Portuguese). IEEE Lat Am Trans 9(5):732–739

    Google Scholar 

  72. Braz P et al (2012) Analysis of the disruptive effect model for the prediction of the breakdown characteristics of distribution insulators under non-standard lightning impulses. In: Proc Lightning Protection Int Conf (2012). pp 1–7

  73. Lopes G P, Pedroso J A D, Martinez M L B (2013) Evaluation of CFO for medium voltage insulators submitted to non-standard impulse shapes experimental results. In: Proc IEEE Electr Insul Conf (EIC) (2013). pp 419–423

  74. Metwally IA (2013) Performance improvement of slow-wave rogowski coils for high impulse current measurement. IEEE Sens J 13(2):538–547

    Google Scholar 

  75. Bhuyan K, Chatterjee S (2015) Simulation of overvoltage stresses on surge arrester insulation. Int Trans Electr Energy Syst 26(6):1210–1225

    Google Scholar 

  76. Krithika G, Usa S (2015) v-t Characteristics using extended disruptive effect model for impulses of varying front times. IEEE Trans Dielectr Electr Insul 22(4):2191–2195

    Google Scholar 

  77. Shigihara M, Piantini A (2016) Volt-time curves of 24 kV porcelain insulators under non-standard impulse waveshapes. In: Proc Lightning Protection (ICLP) Int Conf (2016). pp 1–5

  78. Bhattacharyya S et al (2016) Electric stress analysis of a medium voltage cable termination subjected to standard and non-standard lightning impulse voltages. In: Proc Intelligent Contr Power Instru (ICICPI) Int Conf (2016). pp 169–173

  79. Huang K, Zhang X (2016) An experimental study on corona q-u curves under non-standard lightning impulses. J Electrostatics 81:37–41

    Google Scholar 

  80. Lopes G P et al (2016) Lightning withstand of medium voltage cut-out fuses stressed by non-standard impulse shapes experimental results. In: Proc IEEE Electr Insul Conf (EIC) (2016). pp 210–214

  81. Shigihara M et al (2018) Generation of non-standard lightning impulse unipolar waveshapes. In: Proc IEEE High Volt Eng App (ICHVE) Int Conf (2018). pp 1–4

  82. Mahmood F, Rizk MdEM, Lehtonen M (2019) Risk-based insulation coordination studies for protection of medium-voltage overhead lines against lightning-induced overvoltages. Electr Eng (Springer) 101:311–320

    Google Scholar 

  83. Liang H, Du B, Li J (2020) Non-intrusive measurement of transient electric field distribution under AC and impulse voltages. IEEE Sens J 20(18):10898–10902

    Google Scholar 

  84. Wickert HM, Marchesan TB (2021) A method for representing non-standard waveform in factory tests using impulse waveforms. IEEE Trans Power Del 1–10, 2021 [Online]. Available: https://doi.org/10.1109/TPWRD.2021.3129603

  85. Caldwell RO, Darveniza M (1973) Experimental and analytical studies of the effect of non-standard waveshapes on the impulse strength of external insulation. IEEE Trans Power App Syst PAS 92(4):1420–1428

    Google Scholar 

  86. Suzuki T, Miyake K (1977) Experimental study of breakdown voltage-time characteristics of large air gaps with lightning impulses. IEEE Trans Power App Syst 96(1):227–233

    Google Scholar 

  87. Okabe S et al (1999) Dielectric characteristics of oil-filled transformer insulation models under non-standard lightning impulse voltages. In: Proc Eng Symp High Volt (1999). (467): 345–348

  88. Okabe S et al (2001) Dielectric characteristics of oil-filled transformer under non-standard lightning surge waveforms: dielectric characteristics of oil-filled transformer insulation models under fast Front short-duration impulse voltages (Japanese). IEEJ Trans Power Energy 121(6):775–781

    Google Scholar 

  89. Savadamuthu U, Udayakumar K, Jayashankar V (2002) Modified disruptive effect method as a measure of insulation strength for non-standard lightning waveforms. IEEE Trans Power Del 17(2):510–515

    Google Scholar 

  90. Rokunohe T et al (2002) Insulation characteristics of SF6 gas for non-standard impulse voltages polarity reversal pulse waveforms (Japanese). T IEE Japan 122-B(11):1232–1237

    Google Scholar 

  91. Okabe S, Yuasa S (2003) Evaluation method of non-standard lightning impulse waveform for oil-filled transformer. IEEJ Trans Power Energy 123(12):1580–1586

    Google Scholar 

  92. Yuasa S, Okabe S (2003) Breakdown characteristics of SF6 gas for non-standard lightning impulse voltage - insulation characteristics of gas gap and spacer surface under single pulse waveform- (Japanese). IEEJ Trans PE 123(10):1242–1249

    Google Scholar 

  93. Kumar JSS et al (2004) Effective model for prediction of impulse strength of oil-impregnated paper insulation under non-standard impulse voltages. In: Proc Power Syst Tech Int Conf (POWERCON) (2004). pp 1619–1622

  94. Okabe S et al (2004) Dielectric characteristics of oil-filled transformer in the presence of non-standard lightning surge waveforms. Electr Eng Jpn 146(3):39–45

    Google Scholar 

  95. Okabe S, Yuasa S (2004) Evaluation method of non-standard lightning impulse waveforms for GIS (Japanese). IEEJ Trans PE 124(1):156–161

    Google Scholar 

  96. Venkatesan S, Usa S (2005) Impulse volt-time characteristics of oil and OIP insulation. Am J App Sci 2(2):591–596

    Google Scholar 

  97. Ancajima A et al (2005) Breakdown characteristics of MV distribution and electric traction lines insulators stressed by standard and short tail lightning impulses. In: 2005 IEEE Russia Power Tech. pp 1–7

  98. Kaneko S, Yokoi T, Okabe S (2006) Insulation characteristics of CO2 gas for non-standard lightning impulse oscillations - evaluation method of non-standard lightning impulse waveform for CO2 gas insulation- (Japanese). IEEJ Trans PE 126(7):701–707

    Google Scholar 

  99. Venkatesan S, Usa S (2007) Impulse strength of transformer insulation with non-standard waveshapes. IEEE Trans Power Del 22(4):s4-2221

    Google Scholar 

  100. Okabe S (2007) Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse waveforms - definition of non-standard lightning impulse waveforms and insulation characteristics for waveforms including pulses-. IEEE Trans Dielectr Electr Insul 14(1):146–155

    Google Scholar 

  101. Okabe S (2007) Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse - insulation characteristics for non-standard lightning impulse waveforms with oscillations. IEEE Trans Dielectr Electr Insul 14(3):679–688

    Google Scholar 

  102. Mitra P, De A, Chakrabarty A (2009) Investigation on the voltage stresses developed on transformer insulation under non-standard terminal excitations. In: Proc IEEE Region 10 Conf (TENCON) (2009). pp 1–5

  103. Okabe S, Tsuboi T, Takami J (2009) Evaluation of k-factor based on insulation characteristics under non-standard lightning impulse waveforms. IEEE Trans Dielectr Electr Insul 16(4):1124–1126

    Google Scholar 

  104. Wang Z et al (2013) The oil-paper insulation breakdown characteristics under non-standard lightning impulse voltages. In: Proc IEEE Annual Report Electr Insul Dielectr Phenomena Conf (2013) pp 883–886

  105. Krithika G, Usa S (2013) Volt-time characteristics of OIP under non-standard impulses. In: IEEE Condition Assessment Techniques In Electr Syst 1st Int Conf (2013). pp 281–285

  106. Sankarganesh A, Karthikeyan K, Sudha R (2013) Breakdown characteristics of transformer under non-standard impulse voltage. Int J Eng Res Tech (IJERT) 2(4):1266–1269

    Google Scholar 

  107. Sarathi R et al (2013) Understanding the breakdown characteristics of liquid nitrogen under non-standard transient voltages. In: IEEE Industry Info Syst 8th Int Conf (ICIIS) (2013). pp 96–99

  108. Sun P et al (2015) Study on voltage-number characteristics of transformer insulation under transformer invading non-standard lightning impulses. IEEE Trans Dielectr Electr Insul 22(6):3582–3591

    Google Scholar 

  109. Wang T et al (2015) Turn-to-turn insulation breakdown characteristics under non-standard lightning impulse voltages. In: Proc IEEE Prop App Dielectr Materials (ICPADM) 11th Int Conf (2015). pp 200–203

  110. Wang Z et al (2015) Breakdown characteristics of oil-paper insulation under lightning impulse waveforms with oscillations. IEEE Trans Dielectr Electr Insul 22(5):2620–2627

    Google Scholar 

  111. Hua J et al (2017) Study on voltage-number characteristics of capacitor insulation under impulse voltages with different waveforms. In: IEEE 19th Int Conf Dielectr Liquids (ICDL) (2017). pp 1–4

  112. Zhou Y et al (2017) Adjustment of wave front time and overshoot in lightning impulse test for transformer insulation. In: 2017 IEEE conference on electrical insulation and dielectric phenomenon (CEIDP) (2017). pp 270–273

  113. Mubarak ZA, Usa S (2019) Effect of oil impregnated paper thickness and impulse waveshapes on voltage-number characteristics. Electr Eng (Springer) 101:1189–1197

    Google Scholar 

  114. Florkowski M et al (2020) Propagation of lightning, oscillating and non-standard impulse waveforms in transformer windings. In: Proc of the 21st international symposium on high voltage engineering (2020). pp 1254–1264. [Online]. Available: https://doi.org/10.1007/978-3-030-31676-1117

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, P., Das, A.K., Dalai, S. et al. The effects of non-standard lightning impulse on electrical insulation: a review. Electr Eng 104, 4239–4254 (2022). https://doi.org/10.1007/s00202-022-01616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01616-2

Keywords

Navigation