Skip to main content
Log in

Lightning surges in hybrid cable-overhead lines: Part II—voltage estimation for strikes to shield wire

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper (Part II) continues the study from Part I by presenting formulas able to do a fast estimation of the voltage at an underground cable sheath for lightning surges striking an earth wire, with and without back-flashover. Similar to Part I, these formulas do not require an electromagnetic transients (EMT) software and can be implemented as scrip for a fast screening of potential issues, requiring solely the geometric data of the cable and the overhead line. The potential impact and limitations of the simplifications are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. da Silva FF (2015) Simplified frequency-dependent formulae for series-impedance matrices of single-core HVAC cables. In: UPEC 50th

  2. da Silva FF, Pedersen KS, Bak CL (2017) Lightning in hybrid cable-overhead lines and consequent transient overvoltages. In: International Conference on Power System Transients

  3. CIGRE WG 33.01 (1991) Guide to procedures for estimating the lightning performance of transmission lines. In: CIGRE

  4. Fast Front Transients Task Force (1996) Modeling guidelines for fast front transients. IEEE Trans Power Deliv 11(1) (discussion section of the paper)

  5. Hitachi ABB Power Grids (2020) Application note 3.1—cable sheaths overvoltage protection

  6. Energinet (2013) Kabelhåndbogen—AC-kabelanlæg 132–400 kV (in Danish)

  7. IEEE WG 15-08-09 (2013) Modeling and analysis of system transients using digital programs part 2. IEEE PES-TR7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Faria da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

All simulations were done in PSCAD/EMTDC. The cables and OHLs were modeled using geometric frequency-dependent models, with the data from Tables 1 and 2, respectively. Figure 5 shows the position of the phase conductors and earth wires for the OHL, as well as the thickness and position of the core, insulation, sheath and outer insulation for the cable. Figure 6 shows the schematic of the simulated cases, where C2 is without back-flashover and C2.2 is with back-flashover.

Table 1 Cable data
Table 2 OHL data
Fig. 5
figure 5

Geometric data on OHL (left) and cable (right)

Fig. 6
figure 6

Schematic for the simulations: C2 corresponds to striking on earth wire and no back-flashover; C2.2 to striking on earth wire and back-flashover. The three phases of the OHL are represented as one line, with the back-flashover being to only one phase. The current variables are the ones used for the case with back-flashover (10)

Equation (17) shows the calculation of the sheath voltage at the transition point by combining (10) with (15).

$$\begin{aligned} \frac{{V_{{{\text{EW}}\_I}} }}{{Z_{{{\text{EW}}}} }} - \frac{{V_{S} - V_{{{\text{EW}}\_I}} }}{{Z_{{{\text{EW}}}} }} = 2\frac{{V_{S} }}{{Z_{S} }}\left( {\frac{{Z_{S} }}{{Z_{G} + Z_{S} }}} \right)\\ \quad + \frac{{V_{S} }}{{Z_{G} }} - \frac{{2V_{{{\text{EW}}\_I}} }}{{Z_{C} + Z_{P} }}\left( {\frac{{Z_{S} }}{{Z_{G} + Z_{S} }}} \right) \hfill \\ \Leftrightarrow \frac{{2V_{{{\text{EW}}\_I}} }}{{Z_{{{\text{EW}}}} }} + \frac{{2V_{{{\text{EW}}\_I}} }}{{Z_{C} + Z_{P} }}\left( {\frac{{Z_{S} }}{{Z_{G} + Z_{S} }}} \right)\\ = 2\frac{{V_{S} }}{{Z_{S} }}\left( {\frac{{Z_{S} }}{{Z_{G} + Z_{S} }}} \right) + \frac{{V_{S} }}{{Z_{G} }} + \frac{{V_{S} }}{{Z_{{{\text{EW}}}} }} \hfill \\ \Leftrightarrow \frac{{2V_{{{\text{EW}}\_I}} Z_{S} Z_{G} }}{{Z_{{{\text{EW}}}} Z_{S} Z_{G} }} + \frac{{2V_{{{\text{EW}}\_I}} }}{{Z_{C} + Z_{P} }}\left( {\frac{{Z_{S} }}{{Z_{G} + Z_{S} }}} \right)\\ = \frac{{V_{S} }}{{Z_{{{\text{EW}}}} Z_{S} Z_{G} }}\left( {2Z_{{{\text{EW}}}} Z_{G} \left( {\frac{{Z_{S} }}{{Z_{G} + Z_{S} }}} \right) + Z_{{{\text{EW}}}} Z_{S} + Z_{S} Z_{G} } \right) \hfill \\ \Leftrightarrow \frac{{2V_{{{\text{EW}}\_I}} Z_{S} Z_{G} }}{{Z_{{{\text{EW}}}} Z_{S} Z_{G} }} + \frac{{2V_{{{\text{EW}}\_I}} }}{{Z_{C} + Z_{P} }}\left( {\frac{{Z_{S} }}{{Z_{G} + Z_{S} }}} \right)\\ = \frac{{V_{S} }}{{Z_{{{\text{EW}}}} Z_{S} Z_{G} \left( {Z_{G}+ Z_{S} } \right)}}\\ \times( 2Z_{{{\text{EW}}}} Z_{G} Z_{S} + Z_{{{\text{EW}}}} Z_{S} \left( {Z_{G} + Z_{S} } \right)+ Z_{S} Z_{G} \left( {Z_{G} + Z_{S} } \right) ) \hfill \\ \Leftrightarrow \frac{{2V_{{{\text{EW}}\_I}} Z_{G} }}{{Z_{{{\text{EW}}}} Z_{G} }} + \frac{{2V_{{{\text{EW}}\_I}} }}{{Z_{C} + Z_{P} }}\left( {\frac{{Z_{S} }}{{Z_{G} + Z_{S} }}} \right)\\ = \frac{{V_{S} }}{{Z_{{{\text{EW}}}} Z_{G} \left( {Z_{G} + Z_{S} } \right)}}( 2Z_{{{\text{EW}}}} Z_{G} + Z_{{{\text{EW}}}} \left( {Z_{G} + Z_{S} } \right)\\ \quad + Z_{G} \left( {Z_{G} + Z_{S} } \right) ) \hfill \\ \Leftrightarrow 2V_{{{\text{EW}}\_I}} Z_{G} \left( {Z_{C} + Z_{P} } \right)\left( {Z_{G} + Z_{S} } \right) + 2V_{{{\text{EW}}\_I}} Z_{{{\text{EW}}}} Z_{S} Z_{G}\\ = V_{S} \left( {2Z_{{{\text{EW}}}} Z_{G} + Z_{{{\text{EW}}}} \left( {Z_{G} + Z_{S} } \right) + Z_{G} \left( {Z_{G} + Z_{S} } \right)} \right)\left( {Z_{C} + Z_{P} } \right) \hfill \\ \Leftrightarrow V_{S} = V_{{{\text{EW}}\_I}} \frac{{2Z_{G} \left( {Z_{C} + Z_{P} } \right)\left( {Z_{G} + Z_{S} } \right) + 2Z_{{{\text{EW}}}} Z_{S} Z_{G} }}{{\left( {2Z_{{{\text{EW}}}} Z_{G} + Z_{{{\text{EW}}}} \left( {Z_{G} + Z_{S} } \right) + Z_{G} \left( {Z_{G} + Z_{S} } \right)} \right)\left( {Z_{C} + Z_{P} } \right)}} \hfill \\ \end{aligned} $$
(17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria da Silva, F., Pedersen, K. Lightning surges in hybrid cable-overhead lines: Part II—voltage estimation for strikes to shield wire. Electr Eng 104, 3445–3451 (2022). https://doi.org/10.1007/s00202-022-01550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01550-3

Keywords

Navigation