Skip to main content
Log in

Lightning surges in hybrid cable-overhead lines: Part I—voltage estimation for shielding failure

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The increasing usage of hybrid cable-overhead lines raises concerns over the protection of short cable sections against lightning surges, because of voltage build-up in the cable section. To set a simulation model of the phenomenon is time consuming, with numerous parameters impacting the overvoltage. This paper (Part I) presents formulas able to perform a fast estimation of the maximum overvoltage at a cable-overhead line transition point in the event of shielding failure. The formulas estimate the overvoltage with and without surge arrester, as well as the energy absorbed by the surge arrester. These formulas do not require an electromagnetic transients software and they can be implemented as a script, requiring solely the geometric data of the cable and overhead line, information available in the respective datasheets. The main usefulness is a tool for a fast screening of the overvoltages and a fast evaluation of the impact of different parameters such as cable length, lightning waveform and grounding impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. McDermott TE (2012) Using IEEE flash to estimate transmission and distribution line lightning performance. IEEE PES T&D

  2. IEEE-Flash [Online]. Available at: http://sourceforge.net/projects/ieeeflash (as of March 2021)

  3. Faria da Silva F, Pedersen KS, Bak CL (2017) Lightning in hybrid cable-overhead lines and consequent transient overvoltages. In: International conference on power system transients

  4. Colla L, Gatta FM, Geri A, Lauria S (2007) Lightning overvoltages in HV-EHV “Mixed” overhead-cable lines. In: International conference on power system transients

  5. Henriksen T (2007) Maximum lightning overvoltage along a cable due to shielding failure. Electr Power Syst Res 77:1460–1465

    Article  Google Scholar 

  6. Henriksen T, Gustavsen B, Balog G, Baur U (2005) Maximum lightning overvoltage along a cable protected by surge arresters. IEEE Trans Power Deliv 20:859–866

    Article  Google Scholar 

  7. CIGRE WG C4.407 (2013) Lightning parameters for engineering applications. Cigré

  8. CIGRE WG 33.01 (1991) Guide to procedures for estimating the lightning performance of transmission lines. Cigré

  9. Gary C (1976) Approche complète de la propagation multifilaire en haute fréquence par utilisation des matrices complexes. EDF Bull Dir Études Rech Sér B-Réseaux Electr Matér Électr

  10. Faria da Silva F (2015) Simplified formulae for the estimation of the positive-sequence resistance and reactance of three-phase cables for different frequencies. UPEC 50th

  11. Ametani A, Ohno T, Nagaoka N (2015) Cable system transients – theory, modeling and Simulation. Wiley, New Jersey

    Book  Google Scholar 

  12. IEEE Std 1410–2010 (2011) IEEE guide for improving the lightning performance of electric power overhead distribution lines. IEEE Power Energy Soc

  13. Berger K, Anderson RB, Kröninger H (1975) Parameters of lightning flashes. Electra N. 41

  14. IEEE WG 3.4.11 (1992) Modelling of metal oxide surge arresters. IEEE Trans Power Deliv 7

  15. CIGRE WG 33.06 (1991) Metal oxide arresters in AC systems. Cigré

  16. Pinceti P, Giannettoni M (1999) A simplified model for zinc oxide surge arresters. IEEE Tran Power Deliv 14:393–398

    Article  Google Scholar 

  17. Fernandez F, Diaz R (2003) Metal oxide surge arrester model for fast transient simulations. In: International conference on power system transients

  18. Mikropoulos PN, Tsovilis TE (2010) Lightning attachment models and maximum shielding failure current of overhead transmission lines: implications in insulation coordination of substations. IET Gener Trans Distrib 4:1299–1313

    Article  Google Scholar 

  19. CIGRE WG C4.26 (2017) Evaluation of lightning shielding analysis methods for EHV and UHV DC and AC transmission lines. Cigré

  20. CIGRE WG B1.05 (2005) Transient voltages affecting long cables. CIGRE

  21. IEC 60071-2:2018 (2018) Insulation co-ordination – Part 2: application guidelines. IEC, Edition 4.0

  22. Jun T, Shigemitsu O (2007) Observational results of lightning current on transmission tower. IEEE Trans Power Deliv 22(1):547–556

    Article  Google Scholar 

  23. Shigemitsu O, Jun T, Toshihiro T, Genyo U, Akihiro A, Kunihiko H (2013) Discussion on standard waveform in the lightning impulse voltage test. IEEE Trans Dielectr Electr Insul 20(1):147–156

    Article  Google Scholar 

  24. Andrew RH (1999) Insulation coordination for power systems, 1st edn. Taylor & Francis, UK, p 267

    Google Scholar 

  25. CIGRE WG C4.33 (2019) Impact of soil-parameter frequency dependence on the response of grounding electrodes and on the lightning performance of electrical systems. CIGRE

  26. Silverio V, Rafael A (2012) Frequency dependence of soil parameters: experimental results, predicting formula and influence on the lightning response of grounding electrodes. IEEE Trans Power Deliv 27(2):927–935

    Article  Google Scholar 

  27. Longmire CL, Smith KS (1975) A universal impedance for soils. Topical report for period July 1– September 30, Defense Nuclear Agency, Santa Barbara, California

  28. Messier MA (1980) The propagation of an electromagnetic impulse through soil: influence of frequency dependent parameters, MRC-N-415. Mission Research Corporation, Santa Barbara

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Faria da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

All simulations were done in PSCAD/EMTDC. The cables and OHLs were modelled using geometric frequency-dependent models, with the data from Tables 

Table 2 Cable data

2 and

Table 3 OHL data

3, respectively. Figure 

Fig. 17
figure 17

Geometric data on OHL (left) and cable (right)

17 shows the position of the phase conductors and earth wires for the OHL, as well as the thickness and position of the core, insulation, sheath and outer insulation for the cable. Figure 

Fig. 18
figure 18

Schematic for the performed simulation: C1 corresponds to a shielding failure. Surge arrester is not considered for the cases of chapter IV

18 shows the schematic for shielding failure simulations shown in chapters IV and V.

Appendix 2

2.1 Derivation of Eq. (14)—W Front

The deduction of (14) is done in (24) for the 2nd reflection, where the voltage is reflected at the cable junction point, after being reflected once at the sending end and twice at the receiving end. In (24), this is represented by the first three terms and the last four terms of the polynomial between brackets, respectively.

$$ W_{{{\text{Front}}}} \left( 2 \right) = \frac{{V_{H\_C} }}{{e^{{n\left( {2A \cdot l_{C} } \right)}} }} \cdot \left( {k_{{{\text{Rec}}}} \cdot k_{{{\text{Rec}}}} \cdot k_{{{\text{Send}}}} + k_{{{\text{Rec}}}} \cdot k_{{{\text{Rec}}}} \cdot k_{{{\text{Send}}}} \cdot k_{{{\text{Send}}}} } \right) $$
(24)

Equation (24) can simplify into (25). For the following reflections, the power of 2 in (25) is replaced by the number of the reflection, resulting in (14).

$$ \begin{gathered} W_{{{\text{Front}}}} \left( 2 \right) = \frac{{V_{H\_C} }}{{e^{{n\left( {2A \cdot l_{C} } \right)}} }} \cdot k_{{{\text{Rec}}}}^{2} \cdot k_{{{\text{Send}}}} \left( {1 + k_{{{\text{Send}}}} } \right) \hfill \\ \Leftrightarrow W_{{{\text{Front}}}} \left( 2 \right) = \frac{{V_{H\_C} }}{{e^{{n\left( {2A \cdot l_{C} } \right)}} }} \cdot \left( {k_{{{\text{Rec}}}} \cdot k_{{{\text{Send}}}} } \right)^{2} \left( {1 + \frac{1}{{k_{{{\text{Send}}}} }}} \right) \hfill \\ \end{gathered} $$
(25)

2.2 Derivation of Eq. (22)—W Front_Arr

Contrary to the case without surge arrester, the value of ksend is not constant, but a function of the current flowing into the surge arrester that changes for every reflection. The value ksend_Arr for reflection n is then the multiplication of the previous ksend. Example, ksend_Arr (3) = ksend (2)·ksend (1) and ksend (2) ≠ k0 (1), because of the surge arrester.

$$ \begin{aligned} W_{{{\text{Front}}\_{\text{Arr}}}} (3)&= \frac{{V_{{H\_C}}}}{{e^{{n( {2A \cdot l_{C} } )}} }} \cdot (k_{{{\text{Rec}}}} \cdot k_{{{\text{Rec}}}} \cdot k_{{{\text{Rec}}}} \cdot k_{{{\text{Send}}}} (1)\\ &\quad \cdot k_{{{\text{Send}}}} ( 2 ) + k_{{{\text{Rec}}}}\cdot k_{{{\text{Rec}}}} \cdot k_{{{\text{Rec}}}} \cdot k_{{{\text{Send}}}} ( 1 )\\ &\quad \cdot k_{{{\text{Send}}}} (2) \cdot k_{{{\text{Send}}}} (3)) \\ \end{aligned} $$
(26)
$$ \begin{aligned} W_{{{\text{Front\_Arr}}}} \left( 3 \right) &= \frac{{V_{H\_C} }}{{e^{{n\left( {2A \cdot l_{C} } \right)}} }} \cdot k_{{{\text{Rec}}}}^{3} \left( k_{{{\text{Send}}}} \left( 1 \right) \cdot k_{{{\text{Send}}}} \left( 2 \right) \right. \\ &\quad \left. + k_{{{\text{Send}}}} \left( 1 \right) \cdot k_{{{\text{Send}}}} \left( 2 \right) \cdot k_{{{\text{Send}}}} \left( 3 \right) \right) \hfill \\ &\quad \Leftrightarrow W_{{{\text{Front\_Arr}}}} \left( 3 \right) = \frac{{V_{H\_C} }}{{e^{{n\left( {2A \cdot l_{C} } \right)}} }} \\ &\quad \cdot k_{{{\text{Rec}}}}^{3} \cdot \left( {k_{{{\text{Send}}}} \left( 1 \right) \cdot k_{{{\text{Send}}}} \left( 2 \right)} \right) \cdot \left( {1 + k_{{{\text{Send}}}} \left( 3 \right)} \right) \hfill \\ &\quad \Leftrightarrow W_{{{\text{Front\_Arr}}}} \left( 3 \right) = \frac{{V_{H\_C} }}{{e^{{n\left( {2A \cdot l_{C} } \right)}} }} \\ &\quad \cdot k_{{{\text{Rec}}}}^{3} \cdot k_{{{\text{Send\_Arr}}}} \left( 3 \right) \cdot \left( {1 + k_{{{\text{Send}}}} \left( 3 \right)} \right) \hfill \\ \end{aligned} $$
(27)

For a reflection n, the multiple instance of the number 3 in (27) are replaced by n (22).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria da Silva, F., Pedersen, K. Lightning surges in hybrid cable-overhead lines: Part I—voltage estimation for shielding failure. Electr Eng 104, 3281–3294 (2022). https://doi.org/10.1007/s00202-022-01538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01538-z

Keywords

Navigation