Skip to main content
Log in

Efficient model-based DC fault detection and location scheme for multi-terminal HVDC systems with voltage source converter

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper introduces an efficient model-based DC fault detection and location scheme for voltage source converter (VSC)-based multi-terminal high voltage DC (MTHVDC) systems. The main idea of the proposed approach is to use the difference signal between the real and estimated currents of the HVDC line as the signature to detect the faulty conditions. The state-space model of the HVDC line is established and used together with the Kalman filter (KF) algorithm for optimal estimation of the DC current at the sending end of the line. The observability of the developed state-space model is analytically proved. The developed model is also used to locate the fault point by post-processing of the measured data with the least-squares method. The main superiorities of the proposed approach are its high accuracy and excellent robustness against measurement noises/errors. These features are demonstrated through extensive MATLAB simulations of a typical three-terminal radial MTHVDC system. Likewise, the real-time feasibility of the proposed approach is guaranteed by some processor-in-the-loop tests. The results show that the proposed method achieves excellent fault detection and location performance, while the measurements are contaminated with noises as strong as 30 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Naseri F, Samet H (2015) A comparison study of high power IGBT-based and thyristor-based AC to DC converters in medium power DC arc furnace plants. In: 9th international conference on compatibility and power electronics (CPE), pp 14–19

  2. Xu Z, Xiao H, Xiao L, Zhang Z (2018) DC fault analysis and clearance solutions of MMC-HVDC systems. Energies 11(4):941

    Article  Google Scholar 

  3. Ahmad M, Wang Z (2019) A hybrid DC circuit breaker with fault-current-limiting capability for VSC-HVDC transmission system. Energies 12(12):2388

    Article  Google Scholar 

  4. Wang L, Liu H, Dai LV, Liu Y (2020) Novel method for identifying fault location of mixed lines. Energies 11(6):1529

    Article  Google Scholar 

  5. Garcia Marquez FP, Gomez Munoz CQ (2020) A new approach for fault detection, location and diagnosis by ultrasonic testing. Energies 13(5):1192

    Article  Google Scholar 

  6. Muzzammel R (2019) Traveling waves-based method for fault estimation in HVDC transmission system. Energies 12(19):3614

    Article  Google Scholar 

  7. Kwon GY, Lee CK, Lee GS, Lee YH, Chang SJ, Jung CK, Kang JW, Shin YJ (2017) Offline fault localization technique on HVDC submarine cable via time-frequency domain reflectometry. IEEE Trans Power Deliv 32(3):1626–1635

    Article  Google Scholar 

  8. Nanayakkara OK, Rajapakse AD, Wachal R (2012) Traveling-wave-based line fault location in star-connected multiterminal HVDC systems. IEEE Trans Power Deliv 27(4):2286–2294

    Article  Google Scholar 

  9. Li Y, Wu L, Li J, Xiong L, Zhang X, Song G, Xu Z (2018) DC fault detection in MTDC systems based on transient high frequency of current. IEEE Trans Power Deliv 34(3):950–962

    Article  Google Scholar 

  10. Li B, Lv M, Li B, Xue S, Wen W (2020) Research on an improved protection principle based on differential voltage traveling wave for VSC-HVDC transmission lines. IEEE Trans Power Deliv 35(5):2319–2328

    Article  Google Scholar 

  11. Li D, Ukil A, Satpathi K, Yeap YM (2021) Improved S transform based fault detection method in VSC interfaced DC system. IEEE Trans Ind Electron 68(6):5024–5035

    Article  Google Scholar 

  12. Bertho R, Lacerda VA, Monaro RM, Vieira JC, Coury DV (2017) Selective nonunit protection technique for multiterminal VSC-HVDC grids. IEEE Trans Power Deliv 33(5):2106–2114

    Article  Google Scholar 

  13. Lan T, Li Y, Duan X (2021) High fault-resistance tolerable traveling wave protection for multi-terminal VSC-HVDC. IEEE Trans Power Deliv 36(2):943–956

  14. Zhang C, Song G, Wang T, Wu L, Yang L (2020) Non-unit traveling wave protection of HVDC grids using Levenberg-Marquart optimal approximation. IEEE Trans Power Deliv 35(5):2260–2271

    Article  Google Scholar 

  15. Granizo Arrabé R, Platero A, C, Álvarez Gómez F, Rebollo López E, (2018) New differential protection method for multiterminal HVDC cable networks. Energies 11(12):3387

  16. Liu L, Liu Z, Popov M, Palensky P, Van der Meijden M (2021) A fast protection of multi-terminal HVDC system based on transient signal detection. IEEE Trans Power Deliv 36(1):43–51

    Article  Google Scholar 

  17. Nadeem MH, Zheng X, Tai N, Gul M, Yu M, He Y (2021) Non-communication based protection scheme using transient harmonics for multi-terminal HVDC networks. Int J Electr Power Energy Syst 127:106636

    Article  Google Scholar 

  18. Li R, Xu L, Yao L (2016) DC fault detection and location in meshed multiterminal HVDC systems based on DC reactor voltage change rate. IEEE Trans Power Deliv 32(3):1516–1526

    Article  Google Scholar 

  19. Liu J, Tai N, Fan C (2016) Transient-voltage-based protection scheme for DC line faults in the multiterminal VSC-HVDC system. IEEE Trans Power Deliv 32(3):1483–1494

    Article  Google Scholar 

  20. Li C, Gole AM, Zhao C (2018) A fast DC fault detection method using DC reactor voltages in HVDC grids. IEEE Trans Power Deliv 33(5):2254–2264

    Article  Google Scholar 

  21. Yang J, Fletcher JE, O’Reilly J, (2011) Short-circuit and ground fault analyses and location in VSC-based DC network cables. IEEE Trans Ind Electron 59(10):3827–3837

  22. Xue S, Lian J, Qi J, Fan B (2017) Pole-to-ground fault analysis and fast protection scheme for HVDC based on overhead transmission lines. Energies 10(7):1059

    Article  Google Scholar 

  23. Hassan M, Hossain MJ, Shah R (2021) DC fault identification in multiterminal HVDC systems based on reactor voltage gradient. IEEE Access 9:115855–115867

  24. Liang Y, Jiang L, Li H, Wang G, Zhong Q, Wang L (2021) Fault analysis and traveling wave protection based on phase characteristics for hybrid multiterminal HVDC systems. IEEE J Emerging Sel Top Power Electron. https://doi.org/10.1109/JESTPE.2021.3102958

  25. Pérez Molina MJ, Larruskain DM, Eguía López P, Etxegarai A (2019) Analysis of local measurement-based algorithms for fault detection in a multi-terminal HVDC grid. Energies 12(24):4808

    Article  Google Scholar 

  26. Elgeziry M, Elsadd M, Elkalashy N, Kawady T, Taalab AM, Izzularab MA (2019) Non-pilot protection scheme for multi-terminal VSC-HVDC transmission systems. IET Renew Power Gener 13(16):3033–3042

    Article  Google Scholar 

  27. Xu J, Lü Y, Zhao C, Liang J (2019) A model-based DC fault location scheme for multi-terminal MMC-HVDC systems using a simplified transmission line representation. IEEE Trans Power Deliv 35(1):386–395

    Article  Google Scholar 

  28. Lin S, Gao S, He Z, Deng Y (2015) A pilot directional protection for HVDC transmission line based on relative entropy of wavelet energy. Energies 17(8):5257–5273

    Google Scholar 

  29. Panahi H, Sanaye-Pasand M, Niaki SHA, Zamani R (2021) Fast Low Frequency Fault Location and Section Identification Scheme for VSC-Based Multi-Terminal HVDC Systems. IEEE Trans Power Deliv. https://doi.org/10.1109/TPWRD.2021.3107513

  30. Christopher E, Sumner M, Thomas DW, Wang X, de Wildt F (2013) Fault location in a zonal DC marine power system using active impedance estimation. IEEE Trans Ind Appl 49(2):860–865

    Article  Google Scholar 

  31. Merlin VL, dos Santos RC, Le Blond S, Coury DV (2018) Efficient and robust ANN-based method for an improved protection of VSC-HVDC systems. IET Renew Power Gener 12(13):1555–1562

    Article  Google Scholar 

  32. Kazemi Z, Naseri F, Yazdi M, Farjah E (2021) An EKF-SVM machine learning-based approach for fault detection and classification in three-phase power transformers. IET Sci, Meas Technol 15:130–142

    Article  Google Scholar 

  33. Naseri F, Ghanbari T, Farjah E (2015) Incipient fault monitoring of medium voltage UD-EPR power cable using Rogowski coil. Int Congr Electr Ind Autom 2015:33–36

    Google Scholar 

  34. Karimi S, Naseri F, Qaedi R, Farjah E, Ghanbari T (2020) Application of Rogowski coil for improving security of transformer differential protection. In: 2020 28th Iranian conference on electrical engineering (ICEE), vol 2020, pp 1–6

  35. Naseri F, Samet H, Ghanbari T, Farjah E (2019) Power transformer differential protection based on least squares algorithm with extended kernel. IET Sci, Meas Technol 13(8):1102–1110

    Article  Google Scholar 

  36. Naseri F, Kazemi Z, Arefi MM, Farjah E (2018) Fast discrimination of transformer magnetizing current from internal faults: an extended Kalman filter-based approach. IEEE Trans Power Deliv 33(1):110–118

    Article  Google Scholar 

  37. Naseri F, Kazemi Z, Farjah E, Ghanbari T (2019) Fast detection and compensation of current transformer saturation using extended Kalman filter. IEEE Trans Power Deliv 34(3):1087–1097

    Article  Google Scholar 

  38. Naseri F, Farjah E, Ghanbari T, Kazemi Z, Schaltz E, Schanen JL (2020) Online parameter estimation for supercapacitor state-of-energy and state-of-health determination in vehicular applications. IEEE Trans Ind Electron 67(9):7963–7972

    Article  Google Scholar 

  39. Naseri F, Schaltz E, Lu K, Farjah E (2020) Real-time open-switch fault diagnosis in automotive permanent magnet synchronous motor drives based on Kalman filter. IET Power Electron 13(12):2450–2460

    Article  Google Scholar 

  40. Simon D (2006) Optimal state estimation: Kalman, H infinity, and nonlinear approaches. Wiley

  41. Ghanbari T, Farjah E, Naseri F, Tashakor N, Givi H, Khayam R (2018) Solid-state capacitor switching transient limiter based on Kalman filter algorithm for mitigation of capacitor bank switching transients. Renew Sustain Energy Rev 90:1069–1081

    Article  Google Scholar 

  42. Kazemi Z, Safavi AA, Naseri F, Urbas L, Setoodeh P (2020) A secure hybrid dynamic state estimation approach for power systems under false data injection attacks. IEEE Trans Ind Inf 16(12):7275–7286

    Article  Google Scholar 

  43. Naseri F, Farjah E, Allahbakhshi M, Kazemi Z (2017) Online condition monitoring and fault detection of large supercapacitor banks in electric vehicle applications. IET Electr Syst Transp 7(4):318–326

    Article  Google Scholar 

  44. Ghanbari T, Farjah E, Naseri F (2018) Power quality improvement of radial feeders using an efficient method. Electr Power Syst Res 163(1):140–153

    Article  Google Scholar 

  45. Naseri F, Farjah E, Kazemi Z, Schaltz E, Ghanbari T, Schanen JL (2020) Dynamic stabilization of DC traction systems using a supercapacitor-based active stabilizer with model predictive control. IEEE Trans Transp Electr 6(1):228–240

    Article  Google Scholar 

  46. Kazemi Z, Safavi AA, Pouresmaeeli S, Naseri F (2019) A practical framework for implementing multivariate monitoring techniques into distributed control system. Control Eng Pract 82(1):118–129

    Article  Google Scholar 

  47. Ghanbari T, Farjah E, Naseri F (2016) Three-phase resistive capacitor switching transient limiter for mitigating power capacitor switching transients. IET Gener, Transm Distrib 10(1):142–153

    Article  Google Scholar 

  48. Kazemi Z, Safavi AA, Arefi MM, Naseri F (2021) Finite-time secure dynamic state estimation for cyber-physical systems under unknown inputs and sensor attacks. Syst, IEEE Trans Syst, Man, Cybern. https://doi.org/10.1109/TSMC.2021.3106228

    Book  Google Scholar 

  49. Naseri F, Schaltz E, Stroe DI, Gismero A, Farjah E (2021) An enhanced equivalent circuit model with real-time parameter identification for battery state-of-charge estimation. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2021.3071679

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mardani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix proof of model observability

Appendix proof of model observability

Consider the following elementary matrix operations: (1) divide row 2 by \(\frac{-1}{2L_{s}}\), (2) add \(\frac{1}{2L_{s}C_{L}}\) times row 1 to row 3, (3) divide row 3 by \(\frac{1}{2L_{s}C_{L}}\), (4) add \(\frac{R_{L}}{2L_{s}L_{L}C_{L}}\) times row 3 to row 4, (5) add \(-\frac{L_{s}+L_{L}}{4L_{s}^2L_{L}C_{L}}\) times row 2 to row 4, (6) divide row 4 by \(\frac{-1}{4L_{s}L_{L}C_{L}}\), and so forth yields:

$$\begin{aligned} \begin{bmatrix} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 &{} 0 &{} 0 \end{bmatrix} \end{aligned}$$
(32)

The new observability matrix has 5 independent rows and columns, which shows that the matrix is full rank. Thus, based on Definition 1, the system is observable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardani, R., Ehteshami, M.Z. Efficient model-based DC fault detection and location scheme for multi-terminal HVDC systems with voltage source converter. Electr Eng 104, 1553–1564 (2022). https://doi.org/10.1007/s00202-021-01412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01412-4

Keywords

Navigation