Skip to main content
Log in

Design and real-time implementation of an adaptive fast terminal synergetic controller based on dual RBF neural networks for voltage control of DC–DC step-down converter

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this study, an improved Adaptive Fast Terminal Synergetic Controller (AFTSC) using Dual Radial Basis Function (RBF) Neural Networks (NNs) for output voltage control of an uncertain DC/DC step-down converters is proposed. Using the considered AFTSC, the with new manifold proposed here enables the DC/DC step-down converter’s state variables to track the preferred reference voltage in presence of disturbances from any initial condition with proper precision and limited time. To rendering the design more robust, a sort of dual RBFNNs are utilized to approximate in real-time unknown converter non-linear dynamics and reduce the modeling error without calling upon usual model linearization and simplifications. The stability of the closed-loop system is assured by means of the Lyapunov method. Considering the PWM DC–DC step-down converter as an example, the considered adaptive RBFNN-FTSC law is studied in detail and implemented on a dSPACE ds1103 card. All the simulation and experimental results illustrate the efficiency and feasibility of the suggested controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dehong X (2007) Modeling and control of power electronics system. Machinery Industry Press, Beijing

    Google Scholar 

  2. Chander S, Agarwal P, Gupta I (2014) Fine-tuned PID controller for fast transient response of DC–DC converter. Eur J Acad Essays 1(2):61–69

    Google Scholar 

  3. Yuanyuan Y, Jinbo L (2006) Analysis of passivity-based sliding-mode control strategy in DC–DC converter. In: Proceedings of Chinese Control Conference, pp 171–174

  4. Son YD, Heo T.W, Santi E, Monti A (2004) Synergetic control approach for induction motor speed control. In: Proceedings of the 30th annual conference of the IEEE Industrial Electronics Society, IECON 2004, Busan, South Korea, vol 1, pp 883–887. https://doi.org/10.1109/IECON.2004.1433432

  5. Kolesnikov A, Veselov G et al (2000) Modern applied control theory: synergetic approach in control theory, chap 2. TSURE Press, Moscow

    Google Scholar 

  6. Elmas C, Deperlioglu O, Sayan HH (2009) Adaptive fuzzy logic controller for DC–DC converters. Expert Syst Appl 36(2):1540–1548

    Article  Google Scholar 

  7. Zhang C, Wang J, Li S, Wu B, Qian C (2015) Robust control for PWM-based DC–DC buck power converters with uncertainty via sampled-data output feedback. IEEE Trans Power Electr 30(1):504–515

    Article  Google Scholar 

  8. Kapat S, Shenoy PS, Krein PT (2012) Near-null response to large-signal transients in an augmented buck converter: a geometric approach. IEEE Trans Power Electron 27(7):3319–3329

    Article  Google Scholar 

  9. Babes B, Boutaghane A, Hamouda N, Mezaache M (2019) Design of a robust voltage controller for a DC–DC buck converter using fractional-order terminal sliding mode control strategy. In: International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, pp 1–6. https://doi.org/10.1109/ICAEE47123.2019.9014788

  10. Hosseinnia SH, Tejado I, Vinagre BM, Sierociuk D (2012) Boolean-based fractional order SMC for switching systems application to a DC–DC Buck converter. SIViP 6(3):445–451

    Article  Google Scholar 

  11. Kolesnikov AA (2014) American Control Conference, Portland, OR, pp 3013–3016. https://doi.org/10.1109/ACC.2014.6859397

  12. Babes B, Boutaghane A, Hamouda N, Mezaache M, Kahla S (2019) A robust adaptive fuzzy fast terminal synergetic voltage control scheme for DC/DC buck converter. In: International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, pp 1–5. https://doi.org/10.1109/ICAEE47123.2019.9014717

  13. Hamouda N, Babes B, Boutaghane A (2021) Design and analysis of robust nonlinear synergetic controller for a PMDC motor driven Wire-Feeder System (WFS). In: Bououden S, Chadli M, Ziani S, Zelinka I (eds) Proceedings of the 4th International Conference on Electrical Engineering and Control Applications. ICEECA 2019. Lecture notes in electrical engineering, vol 682. Springer, Singapore. https://doi.org/10.1007/978-981-15-6403-1_26

  14. Hamouda N, Babes B (2021) A DC/DC buck converter voltage regulation using an adaptive fuzzy fast terminal synergetic control. In: Bououden S, Chadli M, Ziani S, Zelinka I (eds) Proceedings of the 4th International Conference on Electrical Engineering and Control Applications. ICEECA 2019. Lecture notes in electrical engineering, vol 682. Springer, Singapore. https://doi.org/10.1007/978-981-15-6403-1_48

  15. Liu F, Fan S (2009) Adaptive RBFNN fuzzy sliding mode control for two link robot manipulator. In: International conference on artificial intelligence and computational intelligence, pp 272–276

  16. Zeng W, Wang Q (2015) Learning from adaptive neural network control of an underactuated rigid spacecraft. Neurocomputing 168:690–697

    Article  Google Scholar 

  17. Yang C, Li Z, Cui R, Xu B (2014) Neural network-based motion control of underactuated wheeled inverted pendulum models. IEEE Trans Neural Netw Learn Syst 25(11):2004–2016

    Article  Google Scholar 

  18. Fang Y, Fei J, Ma K (2015) Model reference adaptive sliding mode control using RBF neural network for active power filter. Int J Electr Power Energy Syst 73:249–258

    Article  Google Scholar 

  19. Cecati C, Kolbusz J, Rozycki P, Siano P, Wilamowsk B (2015) A novel RBF training algorithm for short-term electric load forecasting and comparative studies. IEEE Trans Ind Electron 62(10):6519–6529

    Article  Google Scholar 

  20. Guo Y, Li K, Yang Z, Deng J, Laverty D (2015) A novel radial basis function neural network principal component analysis scheme for PMU-based wide-area power system monitoring. Electr Power Syst Res 127:197–205

    Article  Google Scholar 

  21. Oroian M (2015) Influence of temperature, frequency and moisture content on honey viscoelastic parameters—neural networks and adaptive neuro-fuzzy inference system prediction. LWT Food Sci Technol 63(2):1309–1316

    Article  Google Scholar 

  22. Chen W, Ge S, Wu J, Gong M (2015) Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori. IEEE Trans Neural Netw Learn Syst 26(9):1842–1854

    Article  MathSciNet  Google Scholar 

  23. Santi E, Monti A, Li D et al (2004) Synergetic control for power electronics applications: a comparison with the sliding mode approach. J Circ Syst Comput 13:737–760

    Article  Google Scholar 

  24. Bouchama Z, Essounbouli N et al (2016) Reaching phase free adaptive fuzzy synergetic power system stabilizer. Electr Power Energy Syst 77:43–49

    Article  Google Scholar 

  25. Fazal R, Choudhry MA (2017) Design of nonlinear static var compensator based on synergetic control theory. Electr Power Syst Res 151:243–250

    Article  Google Scholar 

  26. Nettari Y, Kurt S (2018) Design of a new non-singular robust control using synergetic theory for DC–DC buck converter. Electrica 18(2):292–299

    Article  Google Scholar 

  27. Zerroug N, Harmas MN, Benaggoune S, Bouchama Z, Zehar K (2018) DSP-based implementation of fast terminal synergetic control for a DC–DC Buck converter. J Frankl Inst 355:2329–2343

    Article  MathSciNet  Google Scholar 

  28. Wang JX, Li SH, Yang J et al (2016) Finite-time disturbance observer based non-singular terminal sliding-mode control for pulse width modulation based DC–DC buck converters with mismatched load disturbances. IET Power Electron 9:1995–2002. https://doi.org/10.1049/iet-pel.2015.0178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badreddine Babes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babes, B., Boutaghane, A. & Hamouda, N. Design and real-time implementation of an adaptive fast terminal synergetic controller based on dual RBF neural networks for voltage control of DC–DC step-down converter. Electr Eng 104, 945–957 (2022). https://doi.org/10.1007/s00202-021-01353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01353-y

Keywords

Navigation