Skip to main content

Advertisement

Log in

FPGA Implementation of High-Efficiency Dynamic MPPT Controller for Wind Energy Conversion System Using Neural Network

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a dynamic maximum power point tracking controller for a wind energy conversion system (WECS) with a battery storage system (BSS). Here, the multilayer feed-forward neural network (MLFF-NN) is used to generate the duty cycle for the DC-DC boost converter and tracks the maximum power from the WECS, whereas the charge controller is used to control the bi-directional converter of BSS to compensate for the uncertainty in the wind conversion system and load changes. Initially, a conventional P&O algorithm is implemented and obtained data are used to train the MLFF-NN with various combinations of input parameters. The best combination of input parameters is selected based on structure, target MSE, epochs, and cost. The proposed controller replaces the conventional technique and provides accurate and dynamic tracking of maximum power for trained and untrained conditions which increase the efficiency of the system. The proposed work is implemented in MATLAB/Simulink platform and results are validated in a different condition. Also, an experimental setup is developed with a 1 kW rating of WECS, whereas in hardware to reduce the computational burden on FPGA, the Elliot function with 16-bit precision is realized without losing accuracy. Finally, the simulation and hardware results are verified and comparative analysis with other existing techniques is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Lu, S.; Wang, L.; Lo, T.-M.; Prokhorov, A.V.: Integration of wind power and wave power generation systems using a DC microgrid. IEEE Trans Ind Appl 51, 2753–2761 (2015). https://doi.org/10.1109/TIA.2014.2367102

    Article  Google Scholar 

  2. Bhargavi, K.M.; Jayalakshmi, N.S.: A new control strategy for plug-in electric vehicle of DC microgrid with PV and wind power Integration. J Electr Eng Technol 14, 13–25 (2019). https://doi.org/10.1007/s42835-018-00013-9

    Article  Google Scholar 

  3. Nayak, D.S.; Shivarudraswamy, R.; Drossard, F.: The new control scheme for the PV and wind hybrid system connected to the single phase grid. J Electr Eng Technol 15, 1929–1936 (2020). https://doi.org/10.1007/s42835-020-00428-3

    Article  Google Scholar 

  4. Farias, G.C.; Caracas, J.V.M.; de Matos, J.G.; Ribeiro. L.A.S: A wind energy battery charging system with dynamic current limitation for output power limiting. In: 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, pp. 1–7 (2017)

  5. Abdullah, M.A.; Yatim, A.H.M.; Tan, C.W.; Saidur, R.: A review of maximum power point tracking algorithms for wind energy systems. Renew Sustain Energy Rev 16, 3220–3227 (2012). https://doi.org/10.1016/j.rser.2012.02.016

    Article  Google Scholar 

  6. Abdel-Salam, M.; El-Mohandes, M.T.; El-Ghazaly, M.: An efficient tracking of MPP in PV systems using a newly-formulated P&O-MPPT method under varying irradiation levels. J Electr Eng Technol 15, 501–513 (2020). https://doi.org/10.1007/s42835-019-00283-x

    Article  Google Scholar 

  7. Singh, J.; Ouhrouche, M.: MPPT control methods in wind energy conversion systems. In: Fundamental and Advanced Topics in Wind Power. InTech (2011)

  8. Dida, A.; Benattous, D.: A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control. Front Energy 10, 143–154 (2016). https://doi.org/10.1007/s11708-016-0402-1

    Article  Google Scholar 

  9. Wei, C.; Zhang, Z.; Qiao, W.; Qu, L.: An adaptive network-based reinforcement learning method for MPPT control of PMSG wind energy conversion systems. IEEE Trans Power Electron 31, 7837–7848 (2016). https://doi.org/10.1109/TPEL.2016.2514370

    Article  Google Scholar 

  10. Asghar, A.B.; Liu, X.: Adaptive neuro-fuzzy algorithm to estimate effective wind speed and optimal rotor speed for variable-speed wind turbine. Neurocomputing 272, 495–504 (2018). https://doi.org/10.1016/j.neucom.2017.07.022

    Article  Google Scholar 

  11. Khan, M.J.; Mathew, L.: Artificial neural network-based maximum power point tracking controller for real-time hybrid renewable energy system. Soft Comput 25, 6557–6575 (2021). https://doi.org/10.1007/s00500-021-05653-0

    Article  Google Scholar 

  12. Eedara, A.K.; Koritala, C.S.; Rayapudi, S.R.: Modified model predictive control of back-to-back T-type NPC converter interfacing wind turbine-driven PMSG and electric grid. Arab J Sci Eng 44, 7047–7065 (2019). https://doi.org/10.1007/s13369-019-03775-0

    Article  Google Scholar 

  13. Meghni, B.; Dib, D.; Azar, A.T.: A second-order sliding mode and fuzzy logic control to optimal energy management in wind turbine with battery storage. Neural Comput Appl 28, 1417–1434 (2017). https://doi.org/10.1007/s00521-015-2161-z

    Article  Google Scholar 

  14. Belaid, S.; Rekioua, D.; Oubelaid, A., et al.: A power management control and optimization of a wind turbine with battery storage system. J Energy Storage 45, 103613 (2022). https://doi.org/10.1016/j.est.2021.103613

    Article  Google Scholar 

  15. Alzayed, M.; Chaoui, H.; Farajpour, Y.: Maximum power tracking for a wind energy conversion system using cascade-forward neural networks. IEEE Trans Sustain Energy 12, 2367–2377 (2021). https://doi.org/10.1109/TSTE.2021.3094093

    Article  Google Scholar 

  16. Chandrasekaran, K.; Mohanty, M.; Golla, M., et al.: Dynamic MPPT controller using cascade neural network for a wind power conversion system with energy management. IETE J Res (2020). https://doi.org/10.1080/03772063.2020.1756934

    Article  Google Scholar 

  17. Putri, R.I.; Pujiantara, M.; Priyadi, A., et al.: Maximum power extraction improvement using sensorless controller based on adaptive perturb and observe algorithm for PMSG wind turbine application. IET Electr Power Appl 12, 455–462 (2018). https://doi.org/10.1049/iet-epa.2017.0603

    Article  Google Scholar 

  18. Davari, M.; Mohamed, Y.A.-R.I.: Robust DC-link voltage control of a full-scale PMSG wind turbine for effective integration in DC grids. IEEE Trans Power Electron 32, 4021–4035 (2017). https://doi.org/10.1109/TPEL.2016.2586119

    Article  Google Scholar 

  19. Jaramillo-Lopez, F.; Kenne, G.; Lamnabhi-Lagarrigue, F.: A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction. Renew Energy 86, 38–48 (2016). https://doi.org/10.1016/j.renene.2015.07.071

    Article  Google Scholar 

  20. Serhoud, H.; Benattous, D.: Simulation of grid connection and maximum power point tracking control of brushless doubly-fed generator in wind power system. Front Energy 7, 380–387 (2013). https://doi.org/10.1007/s11708-013-0252-z

    Article  Google Scholar 

  21. Tiwari, R.; Padmanaban, S.; Neelakandan, R.: Coordinated control strategies for a permanent magnet synchronous generator based wind energy conversion system. Energies 10, 1493 (2017). https://doi.org/10.3390/en10101493

    Article  Google Scholar 

  22. Tsai, M.-F., Tseng, C.-S., Hung, Y.-H.: A novel MPPT control design for wind-turbine generation systems using neural network compensator. In: IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society. IEEE, pp. 3521–3526 (2012)

  23. Satpathy, A.S.; Kishore, N; Kastha, D; Sahoo, NC,: Control scheme for a stand-alone wind energy conversion system. IEEE Trans Energy Convers 29, 418–425 (2014). https://doi.org/10.1109/TEC.2014.2303203

    Article  Google Scholar 

  24. Chitra, A.; Himavathi, S.: A modified neural learning algorithm for online rotor resistance estimation in vector controlled induction motor drives. Front Energy 9, 22–30 (2015). https://doi.org/10.1007/s11708-014-0339-1

    Article  Google Scholar 

  25. Venkadesan, A.; Himavathi, S.; Sedhuraman, K.; Muthuramalingam, A.: Design and field programmable gate array implementation of cascade neural network based flux estimator for speed estimation in induction motor drives. IET Electr Power Appl 11, 121–131 (2017). https://doi.org/10.1049/iet-epa.2016.0550

    Article  Google Scholar 

  26. Hui, J.; Bakhshai, A.; Jain, P.: An energy management scheme with power limit capability and an adaptive maximum power point tracking for small standalone PMSG wind energy systems. IEEE Trans Power Electron (2015). https://doi.org/10.1109/TPEL.2015.2478402

    Article  Google Scholar 

  27. Lin, W.-M.; Hong, C.-M.; Chen, C.-H.: Neural-network-based MPPT control of a stand-alone hybrid power generation system. IEEE Trans Power Electron 26, 3571–3581 (2011). https://doi.org/10.1109/TPEL.2011.2161775

    Article  Google Scholar 

  28. Morimoto, S.; Nakayama, H.; Sanada, M.; Takeda, Y.: Sensorless output maximization control for variable-speed wind generation system using IPMSG. In: 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003. IEEE, pp. 1464–1471 (2005)

  29. Hong, Y.-Y.; Lu, S.-D.; Chiou, C.-S.: MPPT for PM wind generator using gradient approximation. Energy Convers Manag 50, 82–89 (2009). https://doi.org/10.1016/j.enconman.2008.08.035

    Article  Google Scholar 

  30. Abdullah, M.A.; Al-Hadhrami, T.; Tan, C.W.; Yatim, A.H.: Towards green energy for smart cities: particle swarm optimization based MPPT approach. IEEE Access 6, 58427–58438 (2018). https://doi.org/10.1109/ACCESS.2018.2874525

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored and funded by the Science and Engineering Research Board (SERB), Govt. of India, under File no. ECR/2017/000468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallikarjuna Golla.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golla, M., Thangavel, S. & Simon, S.P. FPGA Implementation of High-Efficiency Dynamic MPPT Controller for Wind Energy Conversion System Using Neural Network. Arab J Sci Eng 47, 14491–14506 (2022). https://doi.org/10.1007/s13369-022-06814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06814-5

Keywords

Navigation