Skip to main content
Log in

Speed sensorless fault-tolerant control of induction motor drives against current sensor fault

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Current sensors are needed in conventional field-oriented control (FOC) in 3-phase induction motor (3-PIM) drives. Nevertheless, these sensors are exposed to different faults which reduce the reliability of drive systems. To solve this problem, a current sensor fault-tolerant control (FTC) for 3-PIM drives without speed measurement is proposed in this paper. In the proposed scheme, a sensorless FOC strategy based on open-loop speed estimator is utilized for normal condition. A third-difference operator performs the task of fault detection and isolation (FDI). After FDI, a sensorless FOC strategy based on extended Kalman filter (EKF) is used for the faulty condition. In this paper, the EKF is used for stator currents and speed estimation during post-fault operation. Such scheme is appropriate for sensorless 3-PIM drives to increase safety and reliability of the system, in the case of current sensor fault. The proposed FTC scheme is experimented for a 1HP 3-PIM drive system through a DSP/TMS320F28335. The experimental results show that the proposed FTC system can accurately and effectively control the 3-PIM during both healthy and faulty conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hannan MA, Ali JA, Mohamed A, Hussain A (2018) Optimization techniques to enhance the performance of induction motor drives: a review. Renew Sustain Energy Rev 81:1611–1626

    Article  Google Scholar 

  2. Jannati M, Anbaran SA, Asgari SH, Goh WY, Monadi A, Aziz MJA, Idris NRN (2017) A review on variable speed control techniques for efficient control of single-phase induction motors: evolution, classification, comparison. Renew Sustain Energy Rev 75:1306–1319

    Article  Google Scholar 

  3. Bolognani S, Peretti L, Zigliotto M (2008) Parameter sensitivity analysis of an improved open-loop speed estimate for induction motor drives. IEEE Trans Power Electron 23(4):2127–2135

    Article  Google Scholar 

  4. Rattanaudompisut A, Po-Ngam S (2015) Implementation of an adaptive full-order observer for speed-sensorless induction motor drives. In: 2015 18th international conference on electrical machines and systems (ICEMS). IEEE, pp 1871–1876

  5. Bensiali N, Etien E, Benalia N (2015) Convergence analysis of back-EMF MRAS observers used in sensorless control of induction motor drives. Math Comput Simul 115:12–23

    Article  MathSciNet  Google Scholar 

  6. Zaky MS, Khater M, Yasin H, Shokralla SS (2010) Very low speed and zero speed estimations of sensorless induction motor drives. Electr Power Syst Res 80(2):143–151

    Article  Google Scholar 

  7. Brandstetter P, Kuchar M (2017) Sensorless control of variable speed induction motor drive using RBF neural network. J Appl Logic 24:97–108

    Article  MathSciNet  Google Scholar 

  8. Yin Z, Li G, Zhang Y, Liu J (2018) Symmetric-strong-tracking-extended-Kalman-filter-based sensorless control of induction motor drives for modeling error reduction. IEEE Trans Industr Inf 15(2):650–662

    Article  Google Scholar 

  9. Sun W, Xu DG, Jiang D (2018) Observability analysis for speed sensorless induction motor drives with and without virtual voltage injection. IEEE Trans Power Electron 34(9):9236–9246

    Article  Google Scholar 

  10. Jannati M, Idris NRN, Aziz MJA (2016) Performance evaluation of the field-oriented control of star-connected 3-phase induction motor drives under stator winding open-circuit faults. J Power Electron 16(3):982–993

    Article  Google Scholar 

  11. Niemann H, Stoustrup J (2005) Passive fault tolerant control of a double inverted pendulum—a case study. Control Eng Pract 13(8):1047–1059

    Article  Google Scholar 

  12. Prieto IG, Duran MJ, Garcia-Entrambasaguas P, Bermudez M (2019) Field-oriented control of multiphase drives with passive fault tolerance. IEEE Trans Ind Electron 67(9):7228–7238

    Article  Google Scholar 

  13. Benosman M, Lum KY (2009) Passive actuators’ fault-tolerant control for affine nonlinear systems. IEEE Trans Control Syst Technol 18(1):152–163

    Article  Google Scholar 

  14. Raisemche A, Boukhnifer M, Larouci C, Diallo D (2013) Two active fault-tolerant control schemes of induction-motor drive in EV or HEV. IEEE Trans Veh Technol 63(1):19–29

    Article  Google Scholar 

  15. Tabbache B, Rizoug N, Benbouzid MEH, Kheloui A (2012) A control reconfiguration strategy for post-sensor FTC in induction motor-based EVs. IEEE Trans Veh Technol 62(3):965–971

    Article  Google Scholar 

  16. Xiahou KS, Wu QH (2018) Fault-tolerant control of doubly-fed induction generators under voltage and current sensor faults. Int J Electr Power Energy Syst 98:48–61

    Article  Google Scholar 

  17. Sobanski P, Orlowska-Kowalska T (2017) Faults diagnosis and control in a low-cost fault-tolerant induction motor drive system. Math Comput Simul 131:217–233

    Article  MathSciNet  Google Scholar 

  18. González-Prieto I, Duran MJ, Rios-Garcia N, Barrero F, Martín C (2017) Open-switch fault detection in five-phase induction motor drives using model predictive control. IEEE Trans Ind Electron 65(4):3045–3055

    Article  Google Scholar 

  19. Meinguet F, Sandulescu P, Kestelyn X, Semail E (2012) A method for fault detection and isolation based on the processing of multiple diagnostic indices: application to inverter faults in AC drives. IEEE Trans Veh Technol 62(3):995–1009

    Article  Google Scholar 

  20. Hajary A, Kianinezhad R, Seifossadat SG, Mortazavi SS, Saffarian A (2019) Detection and localization of open-phase fault in three-phase induction motor drives using second order rotational park transformation. IEEE Trans Power Electron 34(11):11241–11252

    Article  Google Scholar 

  21. Verucchi C, Bossio G, Bossio J, Acosta G (2016) Fault detection in gear box with induction motors: an experimental study. IEEE Latin Am Trans 14(6):2726–2731

    Article  Google Scholar 

  22. Tousizadeh M, Che HS, Selvaraj J, Rahim NA, Ooi BT (2018) Performance comparison of fault-tolerant three-phase induction motor drives considering current and voltage limits. IEEE Trans Ind Electron 66(4):2639–2648

    Article  Google Scholar 

  23. Rkhissi-Kammoun Y, Ghommam J, Boukhnifer M, Mnif F (2019) Two current sensor fault detection and isolation schemes for induction motor drives using algebraic estimation approach. Math Comput Simul 157:39–62

    Article  MathSciNet  Google Scholar 

  24. Gou B, Xu Y, Xia Y, Wilson G, Liu S (2018) An intelligent timeadaptive data-driven method for sensor fault diagnosis in induction motor drive system. IEEE Trans Ind Electron 66(12):9817–9827

    Article  Google Scholar 

  25. Dominic DA, Chelliah TR (2014) Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes. ISA Trans 53(5):1680–1694

    Article  Google Scholar 

  26. Yu Y, Zhao Y, Wang B, Huang X, Xu D (2017) Current sensor fault diagnosis and tolerant control for VSI-based induction motor drives. IEEE Trans Power Electron 33(5):4238–4248

    Article  Google Scholar 

  27. Chakraborty C, Verma V (2014) Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation. IEEE Trans Ind Electron 62(3):1943–1954

    Article  Google Scholar 

  28. Manohar M, Das S (2017) Current sensor fault-tolerant control for direct torque control of induction motor drive using flux-linkage observer. IEEE Trans Ind Inf 13(6):2824–2833

    Article  Google Scholar 

  29. Zhang X, Foo G, Vilathgamuwa MD, Tseng KJ, Bhangu BS, Gajanayake C (2013) Sensor fault detection, isolation and system reconfiguration based on extended Kalman filter for induction motor drives. IET Electr Power Appl 7(7):607–617

    Article  Google Scholar 

  30. Bernieri A, Betta G, Pietrosanto A, Sansone C (1994) A neural network approach to instrument fault detection and isolation. In: Conference proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technology Conference (Cat. No. 94CH3424-9). IEEE, pp 139–144

  31. Betta G, Liguori C, Pietrosanto A (1998) An advanced neural-network-based instrument fault detection and isolation scheme. IEEE Trans Instrum Meas 47(2):507–512

    Article  Google Scholar 

  32. Klimkowski K, Dybkowski M (2016) Neural network approach for stator current sensor fault detection and isolation for vector controlled induction motor drive. In: 2016 IEEE international power electronics and motion control conference (PEMC). IEEE, pp 1072–1078

  33. Li H, Monti A, Ponci F (2012) A fuzzy-based sensor validation strategy for AC motor drives. IEEE Trans Ind Inf 8(4):839–848

    Article  Google Scholar 

  34. Gaeta A, Scelba G, Consoli A (2012) Modeling and control of three-phase PMSMs under open-phase fault. IEEE Trans Ind Appl 49(1):74–83

    Article  Google Scholar 

  35. Nikpayam M, Ghanbari M, Esmaeli A, Jannati M (2019) Fault-tolerant control of Y-connected three-phase induction motor drives without speed measurement. Measurement 149:1–14

    Google Scholar 

  36. Liu Y, Stettenbenz M, Bazzi AM (2018) Smooth fault-tolerant control of induction motor drives with sensor failures. IEEE Trans Power Electron 34(4):3544–3552

    Article  Google Scholar 

  37. Benbouzid MEH, Diallo D, Zeraoulia M (2007) Advanced fault-tolerant control of induction-motor drives for EV/HEV traction applications: from conventional to modern and intelligent control techniques. IEEE Trans Veh Technol 56(2):519–528

    Article  Google Scholar 

  38. Shi X, Krishnamurthy M (2014) Survivable operation of induction machine drives with smooth transition strategy for EV applications. IEEE J Emerg Sel Topics Power Electron 2(3):609–617

    Article  Google Scholar 

  39. Krause PC, Wasynczuk O, Sudhoff SD, Pekarek S (2002) Analysis of electric machinery and drive systems, vol 2. IEEE Press, New York

    Book  Google Scholar 

  40. Vas P (1998) Sensorless vector and direct torque control. Oxford University Press, Oxford

    Google Scholar 

  41. Bose BK (2002) Modern power electronics and AC drives, vol 123. Prentice hall, Upper Saddle River, NJ

    Google Scholar 

  42. Barut M, Bogosyan S, Gokasan M (2007) Speed-sensorless estimation for induction motors using extended Kalman filters. IEEE Trans Industr Electron 54(1):272–280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Ghanbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Parameters and nominal values of the 3-PIM

Stator resistance

Rotor resistance

Stator and rotor self-inductances

Mutual inductance

Number of pole pairs

Moment of inertia

Viscous friction coefficient

Nominal torque

Nominal voltage

Nominal power

10.44Ω

14.64Ω

0.6067H

0.597H

2

0.016 kg.m2

0.001 N.m.s

5.1 N.m

400 V

1HP

Controller parameters

Speed PI controller

Current PI controller (d-axis)

Current PI controller (q-axis)

Reference rotor flux

Threshold

\( \begin{aligned} K_{p} = 80\frac{A}{{\left( {{\text{rad}}/s} \right)}} \hfill \\ K_{i} = 120\frac{A}{{\left( {{\text{rad}}/s} \right)}} \hfill \\ \end{aligned} \)

\( \begin{aligned} K_{p} = 2\frac{V}{A} \hfill \\ K_{i} = 11\frac{V}{A} \hfill \\ \end{aligned} \)

\( \begin{aligned} K_{p} = 2\frac{V}{A} \hfill \\ K_{i} = 11\frac{V}{A} \hfill \\ \end{aligned} \)

1wb

0.7A

Appendix B

The dq mutual fluxes can be expressed by (54) and (55) [28]:

$$ \varphi_{d}^{e} = \frac{{I_{m1} }}{{I_{ls} }}\varphi_{ds}^{e} + \frac{{I_{m1} }}{{I_{lr} }}\varphi_{dr}^{e} \Rightarrow p\varphi_{d}^{e} = \frac{{I_{m1} }}{{I_{ls} }}p\varphi_{ds}^{e} + \frac{{I_{m1} }}{{I_{lr} }}p\varphi_{dr}^{e} $$
(54)
$$ \varphi_{q}^{e} = \frac{{I_{m1} }}{{I_{ls} }}\varphi_{qs}^{e} + \frac{{I_{m1} }}{{I_{lr} }}\varphi_{qr}^{e} \Rightarrow p\varphi_{q}^{e} = \frac{{I_{m1} }}{{I_{ls} }}p\varphi_{qs}^{e} + \frac{{I_{m1} }}{{I_{lr} }}p\varphi_{qr}^{e} $$
(55)

Based on (30)–(33), (54), and (55), the following equations can be written:

$$ p\varphi_{d}^{e} = \frac{{I_{m1} }}{{I_{ls} }}\left( { - \frac{{r_{s} }}{{I_{ls} }}\varphi_{ds}^{e} + \varOmega_{e} \varphi_{qs}^{e} + \frac{{r_{s} }}{{I_{ls} }}\varphi_{d}^{e} + v_{ds}^{e} } \right) + \frac{{I_{m1} }}{{I_{lr} }}\left( { - \frac{{r_{r} }}{{I_{lr} }}\varphi_{dr}^{e} + \left( {\varOmega_{e} - \varOmega_{r} } \right)\varphi_{qr}^{e} + \frac{{r_{r} }}{{I_{lr} }}\varphi_{d}^{e} } \right) $$
(56)
$$ p\varphi_{q}^{e} = \frac{{I_{m1} }}{{I_{ls} }}\left( { - \frac{{r_{s} }}{{I_{ls} }}\varphi_{qs}^{e} - \varOmega_{e} \varphi_{ds}^{e} + \frac{{r_{s} }}{{I_{ls} }}\varphi_{q}^{e} + v_{qs}^{e} } \right) + \frac{{I_{m1} }}{{I_{lr} }}\left( { - \frac{{r_{r} }}{{I_{lr} }}\varphi_{qr}^{e} - \left( {\varOmega_{e} - \varOmega_{r} } \right)\varphi_{dr}^{e} + \frac{{r_{r} }}{{I_{lr} }}\varphi_{q}^{e} } \right) $$
(57)

The stator dq currents in terms of dq fluxes can be written as [28]:

$$ c_{ds}^{e} = \frac{{\varphi_{ds}^{e} - \varphi_{d}^{e} }}{{I_{ls} }} $$
(58)
$$ c_{qs}^{e} = \frac{{\varphi_{qs}^{e} - \varphi_{q}^{e} }}{{I_{ls} }} $$
(59)

Based on the 3-PIM model, (58), and (59), the rotor dq fluxes can be expressed by (60) and (61):

$$ \varphi_{dr}^{e} = I_{m} \left( {\frac{{\varphi_{ds}^{e} - \varphi_{d}^{e} }}{{I_{ls} }}} \right) + I_{r} \left( {\frac{{\varphi_{ds}^{e} - I_{s} \left( {\frac{{\varphi_{ds}^{e} - \varphi_{d}^{e} }}{{I_{ls} }}} \right)}}{{I_{m} }}} \right) $$
(60)
$$ \varphi_{qr}^{e} = I_{m} \left( {\frac{{\varphi_{qs}^{e} - \varphi_{q}^{e} }}{{I_{ls} }}} \right) + I_{r} \left( {\frac{{\varphi_{qs}^{e} - I_{s} \left( {\frac{{\varphi_{qs}^{e} - \varphi_{q}^{e} }}{{I_{ls} }}} \right)}}{{I_{m} }}} \right) $$
(61)

Finally, based on (56), (57), (60), (61), the following equations can be written:

$$ \begin{aligned} p\varphi_{d}^{e} = \frac{{I_{m1} }}{{I_{ls} }}\left( { - \frac{{r_{s} }}{{I_{ls} }}\varphi_{ds}^{e} + \varOmega_{e} \varphi_{qs}^{e} + \frac{{r_{s} }}{{I_{ls} }}\varphi_{d}^{e} + v_{ds}^{e} } \right) + \hfill \\ \frac{{I_{m1} }}{{I_{lr} }}\left( \begin{aligned} - \frac{{r_{r} }}{{I_{lr} }}\left( {I_{m} \left( {\frac{{\varphi_{ds}^{e} - \varphi_{d}^{e} }}{{I_{ls} }}} \right) + I_{r} \left( {\frac{{\varphi_{ds}^{e} - I_{s} \left( {\frac{{\varphi_{ds}^{e} - \varphi_{d}^{e} }}{{I_{ls} }}} \right)}}{{I_{m} }}} \right)} \right) + \hfill \\ \left( {\varOmega_{e} - \varOmega_{r} } \right)\left( {I_{m} \left( {\frac{{\varphi_{qs}^{e} - \varphi_{q}^{e} }}{{I_{ls} }}} \right) + I_{r} \left( {\frac{{\varphi_{qs}^{e} - I_{s} \left( {\frac{{\varphi_{qs}^{e} - \varphi_{q}^{e} }}{{I_{ls} }}} \right)}}{{I_{m} }}} \right)} \right) + \frac{{r_{r} }}{{I_{lr} }}\varphi_{d}^{e} \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned} $$
(62)
$$ \begin{aligned} p\varphi_{q}^{e} = \frac{{I_{m1} }}{{I_{ls} }}\left( { - \frac{{r_{s} }}{{I_{ls} }}\varphi_{qs}^{e} - \varOmega_{e} \varphi_{ds}^{e} + \frac{{r_{s} }}{{I_{ls} }}\varphi_{q}^{e} + v_{qs}^{e} } \right) + \hfill \\ \frac{{I_{m1} }}{{I_{lr} }}\left( \begin{aligned} - \frac{{r_{r} }}{{I_{lr} }}\left( {I_{m} \left( {\frac{{\varphi_{qs}^{e} - \varphi_{q}^{e} }}{{I_{ls} }}} \right) + I_{r} \left( {\frac{{\varphi_{qs}^{e} - I_{s} \left( {\frac{{\varphi_{qs}^{e} - \varphi_{q}^{e} }}{{I_{ls} }}} \right)}}{{I_{m} }}} \right)} \right) - \hfill \\ \left( {\varOmega_{e} - \varOmega_{r} } \right)\left( {I_{m} \left( {\frac{{\varphi_{ds}^{e} - \varphi_{d}^{e} }}{{I_{ls} }}} \right) + I_{r} \left( {\frac{{\varphi_{ds}^{e} - I_{s} \left( {\frac{{\varphi_{ds}^{e} - \varphi_{d}^{e} }}{{I_{ls} }}} \right)}}{{I_{m} }}} \right)} \right) + \frac{{r_{r} }}{{I_{lr} }}\varphi_{q}^{e} \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned} $$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholipour, A., Ghanbari, M., Alibeiki, E. et al. Speed sensorless fault-tolerant control of induction motor drives against current sensor fault. Electr Eng 103, 1493–1513 (2021). https://doi.org/10.1007/s00202-020-01179-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01179-0

Keywords

Navigation