Skip to main content

Advertisement

Log in

Implementation of SPV-powered water pumping system using non-isolated SC converter topology

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Plentiful accessibility of fuels, non-erratic, reliable performance, low maintenance, low cost and high life are the significant factors for solar-PV-powered water pumping scheme for irrigation applications. It is highly used in irrigation system for cultivation where the utility-grid is non-available, hilly areas, forests, etc., by utilizing solar source with energy conversion methodology. However, the performance of overall irrigation scheme relies on energy conversion methodology by using feasible DC–DC converter. In this paper, a novel non-isolated switching cell type DC–DC converter has been proposed for acquiring greater performance of Brushless-DC motor to lift the water from ponds or canal through submersible pump. This observation is clearly presented and validated under steady-state condition by using Xilinx FPGA SPARTAN-6 hardware prototype; results are carried out and compared with various converter topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

I phv, V PVv :

SPV current (A), SPV voltage (V)

P PVv :

SPV power (W)

I sv :

Reverse-saturation’s diode current (A)

N :

Diode’s ideality factor

q :

Charge constant

K :

Boltzmann’s constant

R shv/R sv :

Shunt/series resistances of SPV cell (Ω)

T :

Temperature

L a 1, L b 2 :

Main inductors of converter (mH)

C a 1, C c 3 :

Main capacitors of converter (µF)

D a 1, D b 2 :

Main diodes of converter

L c 3 :

Sub-cell inductor of converter (mH)

C b 2 :

Sub-cell capacitor of converter (µF)

D c 3 :

Sub-cell diode of converter

C o :

Output capacitor of converter (µF)

D c 4 :

Output diode of converter

i La 1, i Lb 2 :

Current flowing through main inductor (A)

i Lc 3 :

Current flowing through sub-cell inductor (A)

V La 1, V Lb 2 :

Voltage across main inductor (V)

V Lc 3 :

Voltage across sub-cell inductor (V)

V ca 1, V cc 3 :

Voltage across main capacitors (V)

V cb 2 :

Voltage across sub-cell capacitors (V)

V in ,c :

Input voltage of the converter (V)

V dc , c :

Output voltage of the converter (V)

V c 0 :

Voltage across output capacitors (V)

Δi%:

Tolerance value of inductor ripple current (A)

Δv%:

Maximum ripple factor of capacitor voltage (V)

References

  1. Cendoya MG, Toccaceli GM, Battaiotto PE, Vignoni RJ (2015) Microgrid for remote areas with water pumping based on wind-diesel DER and energy storage. In: Proceedings of IEEE PES innovation smart grid technology Latin America, pp 154–159

  2. Sreewirote B, Noppakant A, Pothisam C (2017) Performance and economic analysis of solar water pump system. In: 2017 ICSREE, pp 73–77, May 2017

  3. Kumar R, Singh B (2014) BLDC motor driven solar PV array fed water pumping system employing zeta converter. In: IEEE 6th India international conference on power electronics (IICPE 2014), pp 8–10, Dec 2014

  4. Caracas Mapurunga JV, De Farias CG, Moreira Teixeira LF, Ribeiro De Souza LA (2014) Implementation of a high-efficiency high-lifetime and low-cost converter for an autonomous photovoltaic water pumping system. IEEE Trans Ind Applicat 50(1):631–641

    Article  Google Scholar 

  5. Kim KT, Kwon JM, Kwon BH (2014) Parallel operation of photovoltaic power conditioning system modules for large-scale photovoltaic power generation. IET Power Electron 7(2):406–417

    Article  Google Scholar 

  6. Elgendy MA, Zahawi B, Atkinson DJ (2010) Comparison of directly connected and constant voltage controlled photovoltaic pumping systems. IEEE Trans Sustain Energy 1(3):184–192

    Article  Google Scholar 

  7. Changchien S-K, Liang T-J, Chen J-F, Yang L-S (2010) Novel high step-up DC–DC converter for fuel cell energy conversion system. IEEE Trans Ind Electron 57(6):2007–2017

    Article  Google Scholar 

  8. Hasaneen BM, Elbaset Mohammed AA (2008) Design and simulation of DC/DC boost converter. In: IEEE power system conference MEPCON, pp 335–340, Mar 2008

  9. Xiong S, Tan S-C, Wong S-C (2012) Analysis and design of a high-voltage-gain hybrid switched-capacitor buck converter. IEEE Trans Circuits Syst I 59(5):1132–1141

    Article  MathSciNet  Google Scholar 

  10. Axelrod B, Berkovich Y, Ioinovici A (2008) Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters. IEEE Trans Circuits Syst I 55(2):687–696

    Article  MathSciNet  Google Scholar 

  11. Maroti PK, Sanjeevi Kumar P, Wheeler P, Blaabjerg F, Rivera M (2017) Modified high voltage conversion inverting CUK DC–DC converter for renewable energy application. In: Southern power electronics conference (SPEC’17) Chile, pp 1–5, 4–7 Dec 2017

  12. Maroti PK, Sanjeevi Kumar P, Blaabjerg F, Fedák V, Siano P, Ramachandaramurthy VK (2017) A novel switched inductor configuration for modified SEPIC DC-to-DC converter for renewable energy application. In: International conference on energy conversion IEEE-CENCON’17, pp 218–223, 30–31 Oct 2017

  13. Bhaskar Ranjana MS, Sreeramula Reddy N, Pavan Kumar RK (2014) A novel non-isolated high step-up DC–DC converters for photovoltaic applications. In: IEEE international conference on circuit power and computing technologies (IEEE-ICCPCT)

  14. Rasheed M, Omar R, Sulaiman M (2016) Design and development of DC–DC boost converter based on DSP TMS320F2812 for PV application. Indian J Sci Technol. doi:https://doi.org/10.17485/ijst/2016/v9i44/100462

    Article  Google Scholar 

  15. Yang LS, Liang TJ (2012) Analysis and implementation of a novel bidirectional DC-DC converter. IEEE Trans Ind Electron 59(1):422–434

    Article  Google Scholar 

  16. Khadmun W, Subsinghaa W (2013) High voltage gain interleaved DC boost converter application for photovoltaic generation system. Elsevier Energy Procedia J 34:390–398

    Article  Google Scholar 

  17. Tofoli FL, de Castro Pereira D, de Paula WJ, de Sousa Oliveira Júnior D (2015) Survey on non-isolated high-voltage step-up DC-DC topologies based on the boost converter. IET Power Electron 8(10):1–14

  18. Hu X, Gong C (2014) A high voltage gain DC-DC converter integrating coupled-inductor and diode-capacitor techniques. IEEE Trans Power Electron 29(2):789–800

    Article  Google Scholar 

  19. Ajami A, Ardi H, Farakhor A (2015) A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications. IEEE Trans Power Electron 30(8):4255–4263

    Article  Google Scholar 

  20. Tang Y, Wang T, Fu D (2015) Multicell switched-inductor/switched-capacitor combined active-network converters. IEEE Trans Power Electron 30(4):2063–2072

    Article  Google Scholar 

  21. Youssef MZ (2015) Design and performance of a cost-effective BLDC drive for water pump application. IEEE Trans Ind Electron 62(5):3277–3284

    Article  Google Scholar 

  22. Kukde H, Lilhare AS (2017) Solar powered brushless DC motor drive for water pumping system. In: Proceedings of international conference on power and embedded drive control (ICPEDC), pp 405–409

  23. Singh B, Kumar R (2016) Solar PV array fed brushless DC motor driven water pump. In: IEEE 6th international conference on power systems (ICPS), pp 1–5

  24. Kumar R, Singh B (2017) Single stage solar PV fed brushless DC motor driven water pump. IEEE J Emerg Sel Topics Power Electron 99:1–1

    Google Scholar 

  25. https://5.imimg.com/data5/OC/GE/MY-6982239/1-h-p-solar-water-pump-system-500x500.jpg

  26. Gupta AK, Saxena R (2016) Review on widely-used MPPT techniques for PV applications. In: International conference on innovation and challenges in cyber security (ICICCS-INBUSH), pp 270–273

  27. Mei Q, Shan M, Liu L et al (2011) A novel improved variable step-size incremental-resistance MPPT method for PV systems. IEEE Trans Ind Electron 58(6):2427–2434

    Article  Google Scholar 

  28. Kumar R, Singh B (2014) Solar PV array fed CUK converter-VSI controlled BLDC motor drive for water pumping. In: 6th IEEE power India international conference (PIICON), pp 1–7, 5–7 Dec 2014

Download references

Acknowledgment

The authors were thankful to the management of Mahatma Gandhi Institute of Technology (Affliated to JNTUH), Hyderabad, Telangana, India, and Kalasalingam Academy of Research & Education, Krishnakovil, Tamil nadu, India, for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vamshi Krishna Varma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Fig. 12.

Fig. 12
figure 12

MPPT performance at varying irradiance levels

Appendix B

See Tables 3 and 4.

Table 3 Operating specifications of solar-PV system
Table 4 Operating specifications of converter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, K.V.K., Ramkumar, A. Implementation of SPV-powered water pumping system using non-isolated SC converter topology. Electr Eng 103, 1433–1444 (2021). https://doi.org/10.1007/s00202-020-01170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01170-9

Keywords

Navigation