Skip to main content

Advertisement

Log in

Load capability estimation of dry-type transformers used in PV-systems by employing field measurements

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Transformer insulation aging is a critical issue for both reliable and economic operations, and for planning of electrical systems. As insulation aging depends on the hottest-spot temperature, transformer management can be improved with a suitable model for temperature estimation and prediction. However, the temperature inside transformers varies dynamically because of changes in both the cooling conditions and the load cycles. Hence, this paper presents an algorithm to estimate and predict the hottest-spot in dry-type distribution transformers, so that their capability and insulation life can be assessed. This procedure is focused on transformers used to directly connect PV-inverters to the grid in order to consider the uncontrolled power generation of distribution PV-systems. To implement the algorithm, it is assumed that records of ambient temperature, PV-system power generation cycle and winding temperature are available. With these data, the parameters of an equivalent thermal circuit are fitted in order to dynamically model the transformer hottest-spot. The method was validated using twelve-day records of a \(70\,\hbox { kW}_{\mathrm{p}}\) PV-generation system connected to a \({75}\,\hbox {kVA}\) dry-type transformer. Results show that an enhancement in the hot-spot estimation is reached, and an assessment of the performance in real-time monitoring of the transformer capacity is achieved employing the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alvarez DL, Rivera SR, Mombello EE (2019) Transformer thermal capacity estimation and prediction using dynamic rating monitoring. IEEE Trans Power Deliv 34(4):1695–1705. https://doi.org/10.1109/TPWRD.2019.2918243

    Article  Google Scholar 

  2. Alvarez DL, da Silva FF, Mombello EE, Bak CL, Rosero JA (2018) Conductor temperature estimation and prediction at thermal transient state in dynamic line rating application. IEEE Trans Power Deliv 33(5):2236–2245. https://doi.org/10.1109/TPWRD.2018.2831080

    Article  Google Scholar 

  3. Awadallah MA, Xu T, Venkatesh B, Singh BN (2016) On the effects of solar panels distribution transformers. IEEE Trans Power Deliv 31(3):1176–1185. https://doi.org/10.1109/TPWRD.2015.2443715

    Article  Google Scholar 

  4. Blanco Alonso PE, Meana-Fernández A, Fernández Oro JM (2017) Thermal response and failure mode evaluation of a dry-type transformer. Appl Therm Eng 120:763–771. https://doi.org/10.1016/j.applthermaleng.2017.04.007

    Article  Google Scholar 

  5. Bracale A, Caramia P, Carpinelli G, De Falco P (2020) SmarTrafo: a probabilistic predictive tool for dynamic transformer rating. IEEE Trans Power Deliv. https://doi.org/10.1109/TPWRD.2020.3012180

    Article  Google Scholar 

  6. C57.134\(^{{\rm TM}}\): IEEE guide for determination of hottest-spot temperature in dry-type transformers (2013)

  7. C57.159\(^{{\rm TM}}\): IEEE guide on transformers for application in distributed photovoltaic (DPV) power generation systems (2016)

  8. C57.96\(^{{\rm TM}}\): IEEE guide for loading dry-type distribution and power transformers ieee power and (2013)

  9. Chen W, Su X (2013) Application of Kalman filter to hot-spot temperature monitoring in oil-immersed power transformer. IEEJ Trans on Electri Electron Eng 8(4):322–327. https://doi.org/10.1002/tee.21862

    Article  Google Scholar 

  10. Dong M (2020) A data-driven long-term dynamic rating estimating method for power transformers. IEEE Trans Power Deliv. https://doi.org/10.1109/tpwrd.2020.2988921

    Article  Google Scholar 

  11. Eslamian M, Vahidi B, Eslamian A (2011) Thermal analysis of cast-resin dry-type transformers. Energy Convers Manag 52(7):2479–2488. https://doi.org/10.1016/j.enconman.2011.02.006

    Article  Google Scholar 

  12. IEEE Std C57.110\(^{{\rm TM}}\)-2018 (Revision of IEEE Std C57.110-2008): IEEE recommended practice for establishing liquid-immersed and dry-type power and distribution transformer capability when supplying nonsinusoidal load currents (2018). https://doi.org/10.1109/IEEESTD.2018.8511103

  13. Lee M, Abdullah HA, Jofriet JC, Patel D (2010) Thermal modeling of disc-type winding for ventilated dry-type transformers. Electr Power Syst Res 80(1):121–129. https://doi.org/10.1016/j.epsr.2009.08.007

    Article  Google Scholar 

  14. Lu H, Borbuev A, Jazebi S, Hong T, de León F (2018) Smart load management of distribution-class Toroidal transformers using a dynamic thermal model. IET Gener Transm Distrib 12(1):142–149. https://doi.org/10.1049/iet-gtd.2017.0360

    Article  Google Scholar 

  15. Mondol JD, Yohanis YG, Norton B (2006) Optimal sizing of array and inverter for grid-connected photovoltaic systems. Solar Energy 80(12):1517–1539. https://doi.org/10.1016/j.solener.2006.01.006

    Article  Google Scholar 

  16. Pezeshki H, Wolfs PJ, Ledwich G (2014) Impact of high PV penetration on distribution transformer insulation life. IEEE Trans Power Deliv 29(3):1212–1220. https://doi.org/10.1109/TPWRD.2013.2287002

    Article  Google Scholar 

  17. Salama MM, Mansour DEA, Abdelmakasoud SM, Abbas AA (2019) Impact of optimum power factor of PV-controlled inverter on the aging and cost-effectiveness of oil-filled transformer considering long-term characteristics. IET Gener Transm Distrib 13(16):3574–3582. https://doi.org/10.1049/iet-gtd.2019.0409

    Article  Google Scholar 

  18. Simon D (2006) Nonlinear Kalman filtering, chapter 13. In: Simon D (ed) Optimal state estimation Kalman, H infinity, and nonlinear approaches. Wiley, New Jersey, pp 395–426. https://doi.org/10.1002/0470045345

    Chapter  Google Scholar 

  19. Susa D, Lehtonen M (2006) Dynamic thermal modeling of power transformers: further development-Part I. IEEE Trans Power Deliv 21(4):1961–1970. https://doi.org/10.1109/TPWRD.2005.864069

    Article  Google Scholar 

  20. Susa D, Lehtonen M, Nordman H (2005) Dynamic thermal modelling of power transformers. IEEE Trans Power Deliv 20(1):197–204. https://doi.org/10.1109/TPWRD.2004.835255

    Article  Google Scholar 

  21. Swift G, Molinski T, Bray R, Menzies R (2001) A fundamental approach to transformer thermal modeling. II. Field verification. IEEE Trans Power Deliv 16(2):176–180. https://doi.org/10.1109/61.915479

    Article  Google Scholar 

  22. Tellez S, Alvarez D, Montano W, Vargas C, Cespedes R, Parra E, Rosero J (2014) National laboratory of smart grids (LAB+i) at the National University of Colombia-Bogota campus. In: 2014 IEEE PES transmission and distribution conference and exposition- Latin America (PES T&D-LA), pp 1–6. IEEE . https://doi.org/10.1109/TDC-LA.2014.6955185

  23. Zhang X, Qian S, Xu Y, Marek R, Lei Q (2020) Overload distribution transformer with natural ester and aramid-enhanced cellulose. IEEE Trans Power Deliv. https://doi.org/10.1109/TPWRD.2020.3015797

    Article  Google Scholar 

  24. Zhou L, Wang L, Tang H, Wang J, Guo L, Cui Y (2018) Oil exponent thermal modelling for traction transformer under multiple overloads. IET Gener Transm Distrib 12(22):5982–5989. https://doi.org/10.1049/iet-gtd.2018.5084

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Alvarez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order to implement the proposed EKF, the following set of equations were derived, where the subscript R is related to the rated condition.

$$\begin{aligned}&\frac{\mathrm{d}\varTheta _{\mathrm{HS}}}{\mathrm{d}t} = \frac{n \left( P_{\mathrm{C}}+L^2 \left( P_{i^2 R,R} K_T+\frac{P_{\mathrm{eddy},R}}{K_T}\right) -\frac{\varTheta _{\mathrm{HS}}-\varTheta _{a}}{R_{0,R} \left( \frac{\rho \left( \varTheta _{\mathrm{HS}}\right) }{\rho \left( \varTheta _{\mathrm{HS},R}\right) } \right) ^{m}}\right) }{m_p C_{p}} \end{aligned}$$
(8)
$$\begin{aligned}&\frac{\mathrm{d} f}{\mathrm{d}\varTheta _{\mathrm{HS}}} = \frac{n}{m_p C_{p}} \left( L^2 \left( \frac{P_{i^2 R,R}}{T_k+\varTheta _{\mathrm{HS},R}} -\frac{P_{\mathrm{eddy},R}}{K_T \left( T_k+\varTheta _{\mathrm{HS}} \right) }\right) \nonumber \right. \\&\quad \left. -\frac{1}{R_{0,R} \left( \frac{\rho \left( \varTheta _{\mathrm{HS}}\right) }{\rho \left( \varTheta _{\mathrm{HS},R}\right) } \right) ^{m}}\right. \nonumber \\&\quad +\left. \frac{m\left( \varTheta _{\mathrm{HS}}-\varTheta _{a}\right) \left( 1.07\cdot 10^{-5}\varTheta _{\mathrm{HS}}-3.78\cdot 10^{-3}\right) }{ \rho \left( \varTheta _{\mathrm{HS}}\right) R_{0,R} \left( \frac{\rho \left( \varTheta _{\mathrm{HS}}\right) }{\rho \left( \varTheta _{\mathrm{HS},R}\right) } \right) ^{m}}\right) \end{aligned}$$
(9)
$$\begin{aligned}&\frac{\mathrm{d} f}{\mathrm{d}n} = \frac{P_{\mathrm{C}}+L^2 \left( P_{i^2 R,R} K_T+\frac{P_{\mathrm{eddy},R}}{K_T}\right) -\frac{\varTheta _{\mathrm{HS}}-\varTheta _{a}}{ R_{0,R} \left( \frac{\rho \left( \varTheta _{\mathrm{HS}}\right) }{\rho \left( \varTheta _{\mathrm{HS},R}\right) } \right) ^{m}}}{m_p C_{p}} \end{aligned}$$
(10)
$$\begin{aligned}&\frac{\mathrm{d} f}{\mathrm{d}m} = \frac{\left( \varTheta _{\mathrm{HS}}-\varTheta _{a}\right) n \ln \left( \frac{\rho \left( \varTheta _{\mathrm{HS}}\right) }{\rho \left( \varTheta _{\mathrm{HS},R}\right) } \right) }{R_{0,R} \left( \frac{\rho \left( \varTheta _{\mathrm{HS}}\right) }{\rho \left( \varTheta _{\mathrm{HS},R}\right) } \right) ^{m} m_p C_{p}} \end{aligned}$$
(11)
$$\begin{aligned}&\frac{\mathrm{d} f}{\mathrm{d}L} = \frac{n 2L \left( P_{i^2 R,R} K_T+\frac{P_{\mathrm{eddy},R}}{K_T}\right) }{R_{0,R} \left( \frac{\rho \left( \varTheta _{\mathrm{HS}}\right) }{\rho \left( \varTheta _{\mathrm{HS},R}\right) } \right) ^{m}m_p C_{p}} \end{aligned}$$
(12)
$$\begin{aligned}&\frac{\mathrm{d} f}{\mathrm{d} \varTheta _a} = \frac{n}{R_{0,R} \left( \frac{\rho \left( \varTheta _{\mathrm{HS}}\right) }{\rho \left( \varTheta _{\mathrm{HS},R}\right) } \right) ^{m}m_p C_p} \end{aligned}$$
(13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, D.L., Restrepo, J., da Silva, F.F. et al. Load capability estimation of dry-type transformers used in PV-systems by employing field measurements. Electr Eng 103, 1055–1065 (2021). https://doi.org/10.1007/s00202-020-01148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01148-7

Keywords

Navigation