Skip to main content

Advertisement

Log in

Effects of currents decomposition on power calculation in nonsinusoidal conditions

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The increased usage of nonlinear loads in electric systems has dissociated the voltage and current signals from the ideal sinusoidal form and, as a consequence, the traditional power calculation is no longer satisfactory. Several power calculation theories applied to nonsinusoidal signals have been proposed; however, there is no general agreement among them. This paper is inserted in this context, reviewing traditional and non-traditional electric power theories for three-phase four-wire systems. The power theories used in this study were the currents’ physical components power theory, the theory of instantaneous power, the Fryze–Buchholz–Depenbrock power theory, the IEEE standard 1459, and the conservative power theory. The mathematical definitions of power theories aforementioned were implemented and applied to real data. Furthermore, the effect of current decomposition based on different power theories was analyzed. The analysis of power theories indicates the particularities of its definitions and the results indicated that reactive current compensation may not minimize circuit losses significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Willems JL (2004) Reflections on apparent power and power factor in nonsinusoidal and polyphase situations. IEEE Trans Power Deliv 19(2):835–840. https://doi.org/10.1109/TPWRD.2003.823182

    Article  Google Scholar 

  2. Curtis HL, Silsbee FB (1935) Definitions of power and related quantities. Trans Am Inst Electr Eng 54(4):394–404. https://doi.org/10.1109/EE.1935.6539147

    Article  Google Scholar 

  3. Morsi WG, El-Hawary ME (2007) Defining power components in nonsinusoidal unbalanced polyphase systems: the issues. IEEE Trans Power Deliv 22:2428–2438. https://doi.org/10.1109/TPWRD.2007.905344

    Article  Google Scholar 

  4. Salmerón P, Montaño JC (1996) Instantaneous power components in polyphase systems under nonsinusoidal conditions. IEE Proc Sci Meas Technol 143:151–155. https://doi.org/10.1049/ip-smt:19960182

    Article  Google Scholar 

  5. Bollen MHJ (2000) Understanding power quality problems: voltage sags and interruptions. IEEE press series on power engineering. Wiley, Berlin

    Google Scholar 

  6. Steinmetz CP (1892) Findet eine Phasenverschiebung im Wechselstromlichtbogen statt? Elektrotech Z 42:567–568

    Google Scholar 

  7. Steinmetz CP (1897) Theory and calculation of alternating current phenomena, 1st edn. The W. J. Johnston Co., New York

    MATH  Google Scholar 

  8. Lamont JW, Fu J (1999) Cost analysis of reactive power support. IEEE Trans Power Syst 14(3):890–898

    Article  Google Scholar 

  9. Knowlton AE (1933) Reactive power concepts in need of clarification. Trans Am Inst Electr Eng 52(3):744–747. https://doi.org/10.1109/EE.1933.6430698

    Article  Google Scholar 

  10. Czarnecki LS (2000) Energy flow and power phenomena in electrical circuits: illusions and reality. Electr Eng 82(3):119–126. https://doi.org/10.1007/s002020050002

    Article  Google Scholar 

  11. Czarnecki LS (2007) Physical interpretation of the reactive power in terms of the CPC power theory. Electr Power Qual Util 13(1):89–95

    MathSciNet  Google Scholar 

  12. Budeanu C (1927) Puissances reactives et fictives. Institut Romain de l’Energie

  13. Fryze S (1931) Active, reactive and apparent power in circuits with nonsinusoidal voltages and currents. Przegla̧d Elektrotechniczny 7:193–203 (in Polish)

  14. Buchholz F (1950) Das Begriffsystem Rechtleistung, Wirkleistung, Totale Blindleistung. Selbstverlag, Munchen

    Google Scholar 

  15. Depenbrock M (1962) Untersuchungen uber die spanungs- und leistungsverhaltnisse bei umrichtern ohne energiespeicher. PhD thesis, Technical University of Hannover, Hannover

  16. Shepherd W, Zakikhani P (1972) Suggested definition of reactive power for nonsinusoidal systems. Proc IEE 119(9):1361–1362

    Google Scholar 

  17. Sharon D (1973) Reactive-power definitions and power-factor improvement in nonlinear systems. Proc IEE 120(6):704–706

    Google Scholar 

  18. Kusters NL, Moore WJM (1980) On the definition of reactive power under non-sinusoidal conditions. IEEE Trans Power Appar Syst PAS–99:1845–1854. https://doi.org/10.1109/tpas.1980.319833

    Article  Google Scholar 

  19. Nowomiejski Z (1981) Generalized theory of electric power. Electr Eng (Arch Elektrotechnik) 63:177–182. https://doi.org/10.1007/bf01578562

    Article  Google Scholar 

  20. Czarnecki LS (1983) An orthogonal decomposition of the current of non-sinusoidal voltage source applied to non-linear loads. Int J Circuit Theory Appl 11:235–239

    Article  Google Scholar 

  21. Akagi H, Kanazawa Y, Fujita K, Nabae A (1983) Generalized theory of instantaneous reactive power and its application. Electr Eng Jpn 103(4):58–66

    Article  Google Scholar 

  22. Ferrero A, Superti-Furga G (1991) A new approach to the definition of power components in three-phase systems under nonsinusoidal conditions. IEEE Trans Instrum Meas 40:568–577. https://doi.org/10.1109/19.87021

    Article  Google Scholar 

  23. Willems JL (1992) A new interpretation of the Akagi–Nabae power components for nonsinusoidal three-phase situations. IEEE Trans Instrum Meas 41:523–527. https://doi.org/10.1109/19.155919

    Article  Google Scholar 

  24. Depenbrock M (1993) The FBD-method, a generally applicable tool for analyzing power relations. IEEE Trans Power Syst 8:387. https://doi.org/10.1109/59.260849

    Article  Google Scholar 

  25. Superti-Furga G (1994) Searching for a generalization of the reactive power—a proposal. Eur Trans Electr Power 4:411–417. https://doi.org/10.1002/etep.4450040515

    Article  Google Scholar 

  26. Peng FZ, Lai JS (1996) Generalized instantaneous reactive power theory for three-phase power systems. IEEE Trans Instrum Meas 45:293–297. https://doi.org/10.1109/19.481350

    Article  Google Scholar 

  27. Tenti P, Mattavelli P (2003) A time-domain approach to power term definitions under non-sinusoidal conditions. In: 6th international workshop on power definitions and measurements under non-sinusoidal conditions, Milan, pp 1–10

  28. IEEE (2010) IEEE standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions (IEEE Std. 1459-2010). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/IEEESTD.2010.5439063

  29. Czarnecki LS (2012) Working, reflected and detrimental active powers. IET Gener Transm Distrib 6:233–239. https://doi.org/10.1049/iet-gtd.2011.0318

    Article  Google Scholar 

  30. Stewart J (2015) Calculus, 8th edn. Cengage Learning, New York

    MATH  Google Scholar 

  31. Buchholz F (1922) Die drehstrom-sheinleistung bei ungleichmassiger belastung der drei zweige. Licht und Kraft 2:9–11

    Google Scholar 

  32. Filipski PS (1993) Apparent power—a misleading quantity in the non-sinusoidal power theory: are all non-sinusoidal power theories doomed to fail? Eur Trans Electr Power 3(1):21–26. https://doi.org/10.1002/etep.4450040518

    Article  Google Scholar 

  33. Czarnecki LS (1985) Considerations on the reactive power in nonsinusoidal situations. IEEE Trans Instrum Meas 34(3):399–404. https://doi.org/10.1109/TIM.1985.4315358

    Article  Google Scholar 

  34. Czarnecki LS (1988) Orthogonal decomposition of the currents in a 3-phase nonlinear asymmetrical circuit with a nonsinusoidal voltage source. IEEE Trans Instrum Meas 37:30–34. https://doi.org/10.1109/19.2658

    Article  Google Scholar 

  35. Czarnecki LS (2019) Currents’ physical components (CPC)-based power theory. A review, part I: power properties of electrical circuits and systems. Przegla̧d Elektrotech 1(10):1–11. https://doi.org/10.15199/48.2019.10.01

    Article  Google Scholar 

  36. Czarnecki LS, Haley PM (2015) Currents’ physical components (CPC) in four-wire systems with nonsinusoidal symmetrical voltage. Przegla̧d Elektrotech 1(6):48–53. https://doi.org/10.15199/48.2015.06.07

    Article  Google Scholar 

  37. Czarnecki LS (2008) Currents’ physical components (CPC) concept: a fundamental of power theory. In: Proceedings of IEEE 2008 international school on nonsinusoidal currents and compensation (ISNCC), Lagow https://doi.org/10.1109/isncc.2008.4627483

  38. Montaño JC, Salmerón P (1999) Identification of instantaneous current components in three-phase systems. IEE Proc Sci Meas Technol 146:227–233. https://doi.org/10.1049/ip-smt:19990463

    Article  Google Scholar 

  39. Akagi H, Kanazawa Y, Nabae A (1984) Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans Ind Appl IA–20(3):625–630

    Article  Google Scholar 

  40. Akagi H, Ogasawara S, Kim H (1999) The theory of instantaneous power in three-phase four-wire systems: a comprehensive approach. In: IEEE industry application society annual meeting, pp 431–439

  41. Akagi H, Watanabe EH, Aredes M (2007) Instantaneous power theory and applications to power conditioning. IEEE Press Series on Power Engineering, Wiley-IEEE Press

  42. Aredes M, Watanabe EH (1995) New control algorithms for series and shunt three-phase four-wire active power filters. IEEE Trans Power Deliv 10(3):1649–1656

    Article  Google Scholar 

  43. Watanabe EH, Stephan RM, Aredes M (1993) New concepts of instantaneous active and reactive powers in electrical systems with generic loads. IEEE Trans Power Deliv 8:703. https://doi.org/10.1109/61.216877

    Article  Google Scholar 

  44. Czarnecki LS (2014) Constraints of instantaneous reactive power p–q theory. IET Power Electron 7:2201–2208. https://doi.org/10.1049/iet-pel.2013.0579

    Article  Google Scholar 

  45. Khalsa HS (2007) Generalised power components definitions for single and three-phase electrical power systems under non-sinusoidal and nonlinear conditions. PhD thesis. Monash University

  46. Czarnecki LS (2004) On some misinterpetations of the instantaneous reactive power p–q theory. IEEE Trans Power Electron 19(3):828–836

    Article  MathSciNet  Google Scholar 

  47. Czarnecki L (2003) Comparison of instantaneous reactive power p–q theory with theory of the current’s physical components. Electr Eng (Arch Elektrotech) 85:21–28. https://doi.org/10.1007/s00202-002-0137-3

    Article  Google Scholar 

  48. Späth H (2007) A general purpose definition of active current and non-active power based on german standard din 40110. Electr Eng (Arch Elektrotech) 89:167–175. https://doi.org/10.1007/s00202-005-0333-z

    Article  Google Scholar 

  49. DIN (1994) Quantities used in alternating current theory: two-line circuits (DIN 40110-1). German National Standard (DIN)

  50. DIN (2002) Quantities used in alternating current theory-part 2: multi-line circuits (DIN 40110-2). German National Standard (DIN)

  51. Staudt V (2008) Fryze–Buchholz–Depenbrock: a time-domain power theory. In: 2008 international school on nonsinusoidal currents and compensation. IEEE, Lagow, pp 1–12. https://doi.org/10.1109/isncc.2008.4627481

  52. Tenti P, Paredes HKM, Mattavelli P (2011) Conservative power theory, a framework to approach control and accountability issues in smart microgrids. IEEE Trans Power Electron 26(3):664–673

    Article  Google Scholar 

  53. Czarnecki LS (2015) Critical comments on the conservative power theory (CPT). In: 12th conference-seminar: international school on nonsinusoidal currents and compensation, ISNCC 2015-conference proceedings, Lagow. https://doi.org/10.1109/ISNCC.2015.7174713

  54. Czarnecki LS (2016) Comparison of the conservative power theory (CPT) with Budeanu’s power theory. Annals of the University of Craiova-Electrical Engineering Series, pp 1–8

  55. Kukačka L, Kraus J, Kolá M, Dupuis P, Zissis G (2016) Review of AC power theories under stationary and non-stationary, clean and distorted conditions. IET Gener Transm Distrib 10(1):221–231. https://doi.org/10.1049/iet-gtd.2015.0713

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian National Research Council (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo de Almeida Coelho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, R.A., Brito, N.S.D., de Lira, G.R.S. et al. Effects of currents decomposition on power calculation in nonsinusoidal conditions. Electr Eng 102, 2325–2339 (2020). https://doi.org/10.1007/s00202-020-01031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01031-5

Keywords

Navigation