Skip to main content
Log in

Analytical design, electromagnetic field analysis and parametric sensitivity analysis of an external rotor permanent magnet-assisted synchronous reluctance motor

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper deals with analytical design, electromagnetic field analysis and parametric sensitivity analysis of an external rotor permanent magnet-assisted synchronous reluctance motor (PMASynRM). In this work, parametric sensitivity analysis of rotor geometry is performed to obtaining the minimum torque ripple and maximum electromagnetic torque with employing numerical analysis based on two-dimensional finite element method (FEM). In order to determine the optimum operation effect of geometry parameters like the q axis insulation ratio and the flux barrier arm angle for the proposed machine with three barriers is investigated and sensitivity of structure for rotor geometrical variation is presented. The studied machine in this work is a three phase, six pole, external rotor PMASynRM, which is designed by analytical approach and analyzed to obtain the maximum torque and minimum torque ripple based on a parametric sensitivity analysis approach. The obtained results from the FEM-based sensitive analysis and electromagnetic field analysis confirm the analytical design procedure for the proposed PMASynRM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Deshpande Y, Toliyat HA (2014) Design of an outer rotor ferrite assisted synchronous reluctance machine (Fa-SynRM) for electric two-wheeler application. In: 2014 IEEE energy conversion congress and exposition (ECCE), pp 3147–3154. IEEE

  2. Wang Y, Ionel DM, Rallabandi V, Jiang M, Stretz SJ (2016) Large-scale optimization of synchronous reluctance machines using CE-FEA and differential evolution. IEEE Trans Ind Appl 52(6):4699–4709

    Article  Google Scholar 

  3. Moghaddam RR, Magnussen F, Sadarangani C (2009) Theoretical and experimental reevaluation of synchronous reluctance machine. IEEE Trans Ind Electron 57(1):6–13

    Article  Google Scholar 

  4. Donaghy-Spargo CM (2016) Synchronous reluctance motor technology: opportunities, challenges and future direction. Eng Technol Ref 5:1–15

    Google Scholar 

  5. Guenther S, Hofmann W (2015) Multi-objective tradeoffs in the design optimization of synchronous reluctance machines for electric vehicle application. In: 2015 IEEE international electric machines and drives conference (IEMDC), pp 1715–1721. IEEE

  6. Loubser AT, Kamper MJ (2015) Design optimisation of reluctance synchronous machine for drive system efficiency. In: 2015 IEEE workshop on electrical machines design, control and diagnosis (WEMDCD, pp 60–65. IEEE

  7. Shen JX, Cai S, Hao H, Jin MJ (2016) Comprehensive parameter design for transversally laminated synchronous reluctance machines. In: 2016 19th international conference on electrical machines and systems (ICEMS), pp 1–9. IEEE

  8. Bianchi N, Degano M, Fornasiero E (2014) Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors. IEEE Trans Ind Appl 51(1):187–195

    Article  Google Scholar 

  9. Bao Y, Degano M, Wang S, Chuan L, Zhang H, Xu Z, Gerada C (2019) A novel concept of ribless synchronous reluctance motor for enhanced torque capability. IEEE Trans Ind Electron 67(4):2553–2563

    Article  Google Scholar 

  10. Gamba M, Pellegrino G, Cupertino F (2014) Optimal number of rotor parameters for the automatic design of synchronous reluctance machines. In: 2014 international conference on electrical machines (ICEM), pp 1334–1340. IEEE

  11. Howard E, Kamper MJ, Gerber S (2014) Flux barrier and skew design optimisation of reluctance synchronous machines. In: 2014 international conference on electrical machines (ICEM), pp 1186–1192. IEEE

  12. Howard E, Kamper MJ, Gerber S (2015) Asymmetric flux barrier and skew design optimization of reluctance synchronous machines. IEEE Trans Ind Appl 51(5):3751–3760

    Article  Google Scholar 

  13. Bacco G, Bianchi N (2018) Design criteria of flux-barriers in synchronous reluctance machines. IEEE Trans Ind Appl 55(3):2490–2498

    Article  Google Scholar 

  14. Pellegrino G, Cupertino F, Gerada C (2013) Barriers shapes and minimum set of rotor parameters in the automated design of Synchronous Reluctance machines. In: 2013 international electric machines and drives conference, pp 1204–1210. IEEE

  15. Babetto C, Bacco G, Bianchi N (2018) Analytical Power Limits Curves of High-Speed Synchronous Reluctance Machines. IEEE Trans Ind Appl 55(2):1342–1350

    Article  Google Scholar 

  16. Sanada M, Inoue Y, Morimoto S (2011). Rotor structure for reducing demagnetization of magnet in a PMASynRM with ferrite permanent magnet and its characteristics. In: 2011 IEEE energy conversion congress and exposition, pp 4189–4194. IEEE

  17. Song BM, Chang KC, Choi JY (2010) Design of an outer-rotor-type permanent magnet motor for electric scooter propulsion systems. In: The 2010 international power electronics conference-ECCE ASIA, pp 2763–2742. IEEE

  18. Vagati A, Franceschini G, Marongiu I, Troglia GP (1992) Design criteria of high performance synchronous reluctance motors. In: Conference record of the 1992 IEEE industry applications society annual meeting, pp 66–73. IEEE

  19. Zhao W, Xing F, Wang X, Lipo TA, Kwon BI (2017) Design and analysis of a novel PM-assisted synchronous reluctance machine with axially integrated magnets by the finite-element method. IEEE Trans Magn 53(6):1–4

    Google Scholar 

  20. Fratta A, Vagati A (1992) Synchronous reluctance versus induction motor: a comparison. In: Proceedings intelligent motion, pp 179–186

  21. Lipo TA (1991) Synchronous reluctance machines-a viable alternative for AC drives? Electric Mach Power Syst 19(6):659–671

    Article  Google Scholar 

  22. Taghavi S, Pillay P (2014) A sizing methodology of the synchronous reluctance motor for traction applications. IEEE J Emerg Sel Top Power Electron 2(2):329–340

    Article  Google Scholar 

  23. Germishuizen JJ, Van der Merwe FS, Van der Westhuizen K, Kamper MJ (2000) Performance comparison of reluctance synchronous and induction traction drives for electrical multiple units. In: Conference record of the 2000 IEEE industry applications conference. Thirty-Fifth IAS annual meeting and world conference on industrial applications of electrical energy (Cat. No. 00CH37129), Vol 1, pp 316–323. IEEE

  24. Spargo CM, Mecrow BC, Widmer JD, Morton C, Baker NJ (2015) Design and validation of a synchronous reluctance motor with single tooth windings. IEEE Trans Energy Conver 30(2):795–805

    Article  Google Scholar 

  25. Yamashita Y, Okamoto Y (2020) Design optimization of synchronous reluctance motor for reducing iron loss and improving torque characteristics using topology optimization based on the level-set method. IEEE Trans Magn 56(3):1–4

    Article  Google Scholar 

  26. Murataliyev M, Degano M, Galea M (2020) A novel sizing approach for synchronous reluctance machines. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2020.2975461

    Article  Google Scholar 

  27. Wu H, Depernet D, Lanfranchi V, El-Kadri-Benkara K, Rasid MAH (2020) A novel and simple torque ripple minimization method of synchronous reluctance machine based on torque function method. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2019.2962490

    Article  Google Scholar 

  28. Deshpande Y, Toliyat HA (2014). Design of an outer rotor ferrite assisted synchronous reluctance machine (Fa-SynRM) for electric two wheeler application. In: 2014 IEEE energy conversion congress and exposition (ECCE), pp 3147–3154. IEEE

  29. Bonthu SSR, Islam MZ, Arafat AKM, Choi S (2017) Five-phase external rotor permanent magnet assisted synchronous reluctance motor for in-wheel applications. In: 2017 IEEE transportation electrification conference and expo (ITEC), pp 586–591. IEEE

  30. Boldea I (1996) Reluctance synchronous machines and drives. Clarendon Press, Oxford

    Google Scholar 

  31. Taghavi S, Pillay P (2016) A novel grain-oriented lamination rotor core assembly for a synchronous reluctance traction motor with a reduced torque ripple algorithm. IEEE Trans Ind Appl 52(5):3729–3738

    Article  Google Scholar 

  32. Bianchi, N. (2013). Synchronous reluctance and interior permanent magnet motors. In 2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) (pp. 75-84). IEEE

  33. Moradi H, Afjei E (2014) Magnetic field analysis of a 9–6 without permanent magnet brushless DC motor by using 3-D finite element method. Electr Eng 96(1):15–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Moradi CheshmehBeigi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi CheshmehBeigi, H., Behroozi, L. Analytical design, electromagnetic field analysis and parametric sensitivity analysis of an external rotor permanent magnet-assisted synchronous reluctance motor. Electr Eng 102, 1947–1957 (2020). https://doi.org/10.1007/s00202-020-01006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01006-6

Keywords

Navigation