Skip to main content

Advertisement

Log in

A novel intervals-based algorithm for the distribution short-circuit calculation

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a novel intervals-based distribution short-circuit calculation algorithm is proposed. In distribution networks, there are various renewable energy-based generators (solar panels, wind generators, small hydro turbines, etc.), as well as loads with uncertain generation and consumption. Therefore, short-circuit calculation has to consider all these uncertainties. The algorithm proposed in this paper deals with above-mentioned uncertainties, as well as correlations among them. Algorithm testing is performed on two test examples of distribution networks, 6-bus and 1003-bus, for the verification of its robustness and efficiency on real-life, large-scale systems. The results demonstrate that the proposed algorithm provides highly accurate results and that it is able to solve real-life short-circuit problems with a higher precision than the traditional deterministic short-circuit calculation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. In the 6-bus test example, line’s shunt admittances are neglected due to the simplicity of the example. The proposed algorithm dealing with line’s shunt admittances and 1003-bus real-world test example has line’s shunt admittances.

References

  1. Anderson PM (1995) Analysis of faulted power systems. IEEE Press, New York

    Google Scholar 

  2. Bergen AR, Vittal V (2000) Power system analysis, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  3. Strezoski VC, Bekut DD (1991) A canonical model for the study of faults in power systems. IEEE Trans Power Syst 4:1493–1499. https://doi.org/10.1109/59.116995

    Article  Google Scholar 

  4. Jabr RA, Dzafic I (2015) A Fortescue approach for real-time short circuit computation in multiphase distribution networks. IEEE Trans Power Syst 6:3276–3285. https://doi.org/10.1109/TPWRS.2014.2376198

    Article  Google Scholar 

  5. Lacroix JS, Kocar I, Belletête M (2013) Accelerated computation of multiphase short circuit summary for unbalanced distribution systems using the concept of selected inversion. IEEE Trans Power Syst 2:1515–1522. https://doi.org/10.1109/TPWRS.2012.2209462

    Article  Google Scholar 

  6. Tu DV, Chaitusaney S, Yokoyama A (2014) Maximum-allowable distributed generation considering fault ride-through requirement and reach reduction of utility relay. IEEE Trans Power Deliv 2:534–541. https://doi.org/10.1109/TPWRD.2013.2279803

    Article  Google Scholar 

  7. Strezoski LV, Prica MD (2016) Real-time short-circuit analysis of active distribution systems. In: IEEE power and energy conference at Illinois (PECI), Champagne, IL. https://doi.org/10.1109/PECI.2016.7459252

  8. Strezoski VC, Vidović PM (2015) Power flow for general mixed distribution networks. Int Trans Electr Energy Syst 10:2455–2471. https://doi.org/10.1002/etep.1974

    Article  Google Scholar 

  9. Shirmohammadi D, Hong HW, Semlyen A, Luo GX (1988) A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans Power Syst 2:753–762. https://doi.org/10.1109/59.192932

    Article  Google Scholar 

  10. Zhang X, Soudi F, Shirmohammadi D, Cheng CS (1995) A distribution short circuit analysis approach using hybrid compensation method. IEEE Trans Power Syst 4:2053–2059. https://doi.org/10.1109/59.476075

    Article  Google Scholar 

  11. Lin WM, Ou TC (2011) Unbalanced distribution network fault analysis with hybrid compensation. IET Gener Transm Distrib 1:92–100. https://doi.org/10.1049/iet-gtd.2008.0627

    Article  Google Scholar 

  12. Sulla F, Svensson J, Samuelsson O (2011) Symmetrical and unsymmetrical short-circuit current of squirrel-cage and doubly-fed induction generators. Electr Power Syst Res 7:1610–1618. https://doi.org/10.1016/j.epsr.2011.03.016

    Article  Google Scholar 

  13. Howard DF, Smith TM, Starke M, Harley RG (2012) Short circuit analysis of induction machines—wind power application. In: IEEE transmission and distribution conference and exposition, Orlando, FL. https://doi.org/10.1109/TDC.2012.6281643

  14. Joint Working Group (2015) Fault current contribution from wind plants. IEEE Power Energy Soc. https://doi.org/10.1109/CPRE.2015.7102165

    Article  Google Scholar 

  15. Gao F, Iravani MR (2008) A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation. IEEE Trans Power Deliv 2:850–859. https://doi.org/10.1109/TPWRD.2007.915950

    Article  Google Scholar 

  16. IEC 60909-0:2016 (2016) Short-circuit currents in three-phase a. c. systems—part 0: calculation of currents

  17. Strezoski LV, Prica MD, Loparo KA (2017) Generalized Δ-circuit concept for integration of distributed generators in online short-circuit calculations. IEEE Trans Power Syst 4:3237–3245. https://doi.org/10.1109/TPWRS.2016.2617158

    Article  Google Scholar 

  18. Zhang N, Kang C, Duan C, Tang X, Huang J, Lu Z, Wang W, Qi J (2010) Simulation methodology of multiple wind farms operation considering wind speed correlation. Int J Power Energy Syst 4:264–273. https://doi.org/10.2316/Journal.203.2010.4.203-4843

    Article  Google Scholar 

  19. Zhang N, Kang C, Xu Q, Jiang C, Chen Z, Liu J (2013) Modelling and simulating the spatio-temporal correlations of clustered wind power using copula. J Electr Eng Technol 6:1615–1625. https://doi.org/10.5370/JEET.2013.8.6.1615

    Article  Google Scholar 

  20. Maya KN, Jasmin EA (2016) Optimal integration of distributed generation (DG) resources in unbalanced distribution system considering uncertainty modelling. Int Trans Electr Energy Syst 1:e2248. https://doi.org/10.1002/etep.2248

    Article  Google Scholar 

  21. Ruiz-Rodriguez FJ, Hernández JC, Jurado F (2017) Voltage behaviour in radial distribution systems under the uncertainties of photovoltaic systems and electric vehicle charging loads. International Transactions on Electrical Energy Systems 2:e2490. https://doi.org/10.1002/etep.2490

    Article  Google Scholar 

  22. Carmona MC, Behnike RP, Estevez GJ (2010) Fuzzy arithmetic for the DC load flow. IEEE Trans Power Syst 1:206–214. https://doi.org/10.1109/TPWRS.2009.2030350

    Article  Google Scholar 

  23. Weng Z, Shi L, Xu Z, Lu Q, Yao L, Ni Y (2014) Fuzzy power flow solution considering wind power variability and uncertainty. Int Trans Electr Energy Syst 3:547–572. https://doi.org/10.1002/etep.1871

    Article  Google Scholar 

  24. Bijwe PR, Raju GKV (2006) Fuzzy distribution power flow for weakly meshed systems. IEEE Trans Power Syst 4:1645–1652. https://doi.org/10.1109/TPWRS.2006.881138

    Article  Google Scholar 

  25. Yu H, Rosehart WD (2012) An optimal power flow algorithm to achieve robust operation considering load and renewable generation uncertainties. IEEE Trans Power Syst 4:1808–1817. https://doi.org/10.1109/TPWRS.2012.2194517

    Article  Google Scholar 

  26. Bagheri A, Monsef H, Lesan H (2015) Evaluating the effects of renewable and nonrenewable DGs on DNEP from the reliability, uncertainty, and operational points of view by employing hybrid GA and OPF. Int Trans Electr Energy Syst 12:3304–3328. https://doi.org/10.1002/etep.2037

    Article  Google Scholar 

  27. Wang Y, Zhang N, Chen Q, Yang J, Kang C, Huang J (2016) Dependent discrete convolution based probabilistic load flow for the active distribution system. IEEE Trans Sustain Energy 3:1000–1009. https://doi.org/10.1109/TSTE.2016.2640340

    Article  Google Scholar 

  28. Vidović PM, Sarić AT (2017) A novel correlated intervals-based algorithm for distribution power flow calculation. Int J Electr Power Energy Syst 90:245–255. https://doi.org/10.1016/j.ijepes.2016.12.019

    Article  Google Scholar 

  29. Piegat A, Landowski M (2012) Is the conventional interval arithmetic correct? J Theor Appl Comput Sci 2:27–44

    Google Scholar 

  30. Piegat A, Landowski M (2013) Two interpretations of multidimensional RDM interval arithmetic-multiplication and division. Int J Fuzzy Syst 4:488–496

    MathSciNet  Google Scholar 

  31. Moore RE (1966) Interval analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  32. Begović MM (2013) Electrical transmission systems and smart grids. Springer, New York

    Book  Google Scholar 

  33. Ranković A, Maksimović BM, Sarić AT, Lukič U (2014) ANN-based correlation of measurements in micro-grid state estimation. Int Trans Electr Energy Syst 10:2181–2202. https://doi.org/10.1002/etep.1956

    Article  Google Scholar 

  34. Garcia PAN, Pereira JLR, Carneiro S Jr, da Costa VM, Martins N (2000) Three-phase power flow calculations using the current injection method. IEEE Trans Power Syst 2:508–514. https://doi.org/10.1109/59.867133

    Article  Google Scholar 

  35. Strezoski LV, Katic V, Dumnic B, Prica MD (2016) Short-circuit modeling of inverter based distributed generators considering the FRT requirements. In: IEEE North American power symposium (NAPS), Denver, CO, USA, Sept 18–20, 2016. https://doi.org/10.1109/NAPS.2016.7747900

  36. Luo GX, Semlyen A (1990) Efficient load flow for large weekly meshed networks. IEEE Trans Power Syst 4:1309–1316. https://doi.org/10.1109/59.99382

    Article  Google Scholar 

  37. Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42:59–66. https://doi.org/10.1080/00031305.1988.10475524

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development, Serbia and Schneider Electric DMS NS, Serbia, under the Project III-42004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Z. Obrenić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendixes

Appendixes

1.1 Appendix A

For DG (photovoltaic or wind) and load, active power is analyzed when weather parameters (from historical database and/or forecasted ones) are changed. The following time-dependent inputs are used for simulations: solar radiation, solar elevation, air temperature, wind speed, wind direction, and atmospheric pressure.

Weather data are classified by using the Self-Organization Map Artificial Neural Network (SOM ANN), where the SOM ANN represents a clustering concept with self-organizing characteristics that can efficiently group different input patterns. The correlation coefficients between dependent inputs are calculated from clustered weather data and corresponding powers from DG units or loads, where the feedforward artificial neural networks (FF ANNs) with back propagation are used for approximating the output active power of unmonitored elements. For details about the applied methodology, see [33].

In this paper, correlation coefficients are calculated from weather data (from weather historical database and/or forecasted values) classified into the winning neuron of the SOM ANN and subsequently from the corresponding internal active powers of DG units and output active powers of loads obtained by FF ANNs. The correlation coefficient between ath and bth inputs classified into the winning neuron is as follows:

$$ k_{ab} = \frac{{{\text{Cov}}(a,b)}}{{\sigma_{a} \sigma_{b} }}, $$
(7.1.1)

where the covariance between ath and bth inputs (za and zb, respectively) in (7.1.1) can be calculated from the set of input samples as [37]:

$$ {\text{Cov}}(a,b) = \frac{1}{N}\sum\nolimits_{n = 1}^{N} {(z_{an} - \bar{z}_{a} )(z_{bn} - \bar{z}_{b} )} , $$
(7.1.2)

where N is the number of samples for a (b)th input, while the mean value for the set of a (b)th input samples is:

$$ \bar{z}_{a(b)} = \frac{1}{N}\sum\nolimits_{n = 1}^{N} {z_{a(b)n} } . $$
(7.1.3)

Standard deviation for a (b)th input in (7.1.1) is as follows:

$$ \sigma_{{a\text{(}b\text{)}}} = \sqrt {\frac{1}{N}\sum\nolimits_{n = 1}^{N} {(z_{a(b)n} - \bar{z}_{a(b)} )^{2} } } . $$
(7.1.4)

1.2 Appendix B

The following equations, in the complex numbers form, present the short-circuit calculation in the ∆-circuit in the bus k:

Single phase

$$ \hat{I}_{xk}^{\Delta } = \frac{{\hat{U}_{xk}^{{}} }}{{\hat{Z}_{xxk} }}, $$
(7.2.1a)
$$ \hat{I}_{yk}^{\Delta } = 0, $$
(7.2.1b)
$$ \hat{I}_{zk}^{\Delta } = 0, $$
(7.2.1c)
$$ x,y,z \in \{ {\text{a,b,c}}\} . $$
(7.2.1d)

Two phases

$$ \hat{I}_{xk}^{\Delta } = \frac{{\hat{U}_{xk} - \hat{U}_{yk} }}{{\hat{Z}_{xxk} - \hat{Z}_{{{\text{y}}xk}} - \hat{Z}_{xyk} + \hat{Z}_{{{\text{yy}}k}} }}, $$
(7.2.2a)
$$ \hat{I}_{yk}^{\Delta } = \frac{{\hat{U}_{yk} - \hat{U}_{xk} }}{{\hat{Z}_{xxk} - \hat{Z}_{yxk} - \hat{Z}_{xyk} + \hat{Z}_{yyk} }}, $$
(7.2.2b)
$$ \hat{I}_{zk}^{\Delta } = 0, $$
(7.2.2c)
$$ x,y,z \in \{ {\text{a,b,c}}\} . $$
(7.2.2d)

Two phases with ground

$$ \hat{I}_{xk}^{\Delta } = \frac{{\hat{Z}_{yyk} \hat{U}_{{{\text{a}}k}} - \hat{Z}_{yxk} \hat{U}_{{{\text{b}}k}} }}{{\hat{Z}_{xxk} \hat{Z}_{yyk} - \hat{Z}_{xyk} \hat{Z}_{yxk} }}, $$
(7.2.3a)
$$ \hat{I}_{xk}^{\Delta } = \frac{{\hat{Z}_{xxk} \hat{U}_{{{\text{b}}k}} - \hat{Z}_{xyk} \hat{U}_{{{\text{a}}k}} }}{{\hat{Z}_{xxk} \hat{Z}_{yyk} - \hat{Z}_{xyk} \hat{Z}_{yxk} }}, $$
(7.2.3b)
$$ \hat{I}_{zk}^{\Delta } = 0, $$
(7.2.3c)
$$ x,y,z \in \{ {\text{a,b,c}}\} . $$
(7.2.3d)

Three phases

$$ \hat{I}_{{{\text{a}}k}}^{\Delta } = \frac{{(\hat{Z}_{3} - \hat{Z}_{4} )(\hat{U}_{{{\text{a}}k}} - \hat{U}_{{{\text{b}}k}} ) + (\hat{Z}_{2} - \hat{Z}_{1} )(\hat{U}_{{{\text{a}}k}} - \hat{U}_{{{\text{c}}k}} )}}{{\hat{Z}_{1} \hat{Z}_{4} - \hat{Z}_{2} \hat{Z}_{3} }}, $$
(7.2.4a)
$$ \hat{I}_{{{\text{b}}k}}^{\Delta } = \frac{{\hat{Z}_{4} (\hat{U}_{{{\text{a}}k}} - \hat{U}_{{{\text{b}}k}} ) - \hat{Z}_{2} (\hat{U}_{{{\text{a}}k}} - \hat{U}_{{{\text{c}}k}} )}}{{\hat{Z}_{1} \hat{Z}_{4} - \hat{Z}_{2} \hat{Z}_{3} }}, $$
(7.2.4b)
$$ \hat{I}_{{{\text{c}}k}}^{\Delta } = \frac{{ - \hat{Z}_{3} (\hat{U}_{{{\text{a}}k}} - \hat{U}_{{{\text{b}}k}} ) + \hat{Z}_{1} (\hat{U}_{{{\text{a}}k}} - \hat{U}_{{{\text{c}}k}} )}}{{\hat{Z}_{1} \hat{Z}_{4} - \hat{Z}_{2} \hat{Z}_{3} }}, $$
(7.2.4c)
$$ \begin{aligned} \hat{Z}_{1} = - \hat{Z}_{{{\text{aa}}k}} + \hat{Z}_{{{\text{ab}}k}} + \hat{Z}_{{{\text{ba}}k}} - \hat{Z}_{{{\text{bb}}k}} ,\quad \hat{Z}_{2} = - \hat{Z}_{{{\text{aa}}k}} + \hat{Z}_{{{\text{ab}}k}} + \hat{Z}_{{{\text{ca}}k}} - \hat{Z}_{{{\text{cb}}k}} , \hfill \\ \hat{Z}_{3} = - \hat{Z}_{{{\text{aa}}k}} + \hat{Z}_{{{\text{ac}}k}} + \hat{Z}_{{{\text{ba}}k}} - \hat{Z}_{{{\text{bc}}k}} ,\quad \hat{Z}_{4} = - \hat{Z}_{{{\text{aa}}k}} + \hat{Z}_{{{\text{ac}}k}} + \hat{Z}_{{{\text{ca}}k}} - \hat{Z}_{{{\text{cc}}k}} . \hfill \\ \end{aligned} $$
(7.2.4d)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obrenić, M.Z., Vidović, P.M. & Strezoski, L.V. A novel intervals-based algorithm for the distribution short-circuit calculation. Electr Eng 101, 1145–1162 (2019). https://doi.org/10.1007/s00202-019-00853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00853-2

Keywords

Navigation