Skip to main content
Log in

Multi-band power oscillation damping controller for power system supported by static VAR compensator

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Low-frequency electromechanical oscillations damping is powerfully crucial in power system operation. In order to fulfill this requirement, power oscillation damping (POD) controllers are installed in synchronous generators and flexible alternating current transmission system devices. These controllers can have either a conventional fixed structure composed by stages of gain and phase compensation or a multi-band modern structure (PSS4B) composed by three bands that correspond to a specific frequency range (low, intermediate and high frequency). In the PSS4B structure, each band consists of two branches based on differential filters (with a gain, lead–lag blocks and a hybrid block). This paper investigates the application of PSS4B as a POD controller for the static VAR compensator (PSS4B-SVC-POD) to damp oscillations in multi-machine power systems. The proposed PSS4B-SVC-POD and power system stabilizers (fitted on generators) are simultaneously designed through an optimization approach aiming at maximizing the closed-loop damping ratio. Modal analysis, frequency responses and time simulations for the well-known two-area four-generator power system show the good performance of the proposed controller fitted on static VAR compensator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

AVR:

Automatic voltage regulator

FACTS:

Flexible alternating current transmission systems

MB-PSS:

Multi-band power system stabilizer (PSS4B)

POD:

Power oscillation damping

PSM:

Power sensitivity model

PSO:

Particle swarm optimization

PSS:

Power system stabilizers

PSS4B:

Modern multi-band power system stabilizer (MB-PSS)

PSS4B-POD:

Proposed POD controller based on the multi-band PSS4B

PSS4B-SVC-POD:

Proposed POD controller for SVC based on the multi-band PSS4B

SSSC:

Static synchronous series compensator

STATCOM:

Static synchronous compensator

SVC:

Static VAR compensator

SVC-POD:

Conventional POD fitted on SVC

TCR:

Thyristor-controlled reactor

TCSC:

Thyristor-controlled series compensator

nb:

Number of busses

ng:

Number of generators

npod1:

Number of conventional POD controllers

npod2:

Number of multi-band PSS4B-POD controllers

npss:

Number of conventional power system stabilizers

nsvc:

Number of static VAR compensators

\( \varOmega_{k} \) :

Set of nodes connected to bus k

D k :

Damping constant of generator k (pu)

E FDk :

Field voltage (exciter output) of generator k (pu)

E qk :

Internal voltage of generator k, proportional to the rotor field flux in the direct axis (pu)

H k :

Inertia constant of generator k (s)

I dk :

d-axis stator current of generator k (pu)

K Ak, T Ak :

Gain (pu) and time constant (s) of AVR at generator k

K SVCi, T SVCi :

Gain (pu) and time constant (s) of the dynamic model of SVC i

P Gk, Q Gk :

Real and reactive generated powers at node k (pu)

P Lk, Q Lk :

Real and reactive power loads at node k (pu)

P km, Q km :

Real and reactive power flows from node k to node m (pu)

P mk :

Mechanical power of generator k (pu)

Q SVC :

Injected reactive power at node k (pu)

T d0 k :

d-axis open-circuit time constant of generator k (s)

V POD i :

Supplementary stabilizing signal (POD output) of SVC i (pu)

V PSS k :

Supplementary stabilizing signal (PSS output) of generator k (pu)

V REF1 k :

Reference voltage of AVR of generator k (pu)

V REF2 i :

Reference voltage of SVC i (pu)

V k :

Voltage magnitude at node k (pu)

X dk :

d-axis synchronous reactance of generator k (pu)

X dk :

d-axis transient reactance of generator k (pu)

X qk :

q-axis synchronous reactance of generator k (pu)

b SVC :

Susceptance of SVC (pu)

δ k :

Internal angle of generator k (degrees)

θ k :

Voltage phase at node k (degrees)

ω s :

Synchronous speed (rad/sec)

Δ :

Deviation operator (used in linearized system of equations)

\( \Delta \omega_{puk} \) :

Rotor speed deviation of generator k (pu)

\( \varvec{f}\left( {\varvec{x},\varvec{z},\varvec{u}} \right) \) :

Set of first-order nonlinear differential equations

\( \varvec{g}\left( {\varvec{x},\varvec{z},\varvec{u}} \right) \) :

Set of nonlinear algebraic equations

u :

Vector of input variables

x :

Vector of state variables

z :

Vector of algebraic variables

\( \xi_{\hbox{min} } \) :

Damping ratio associated with the dominant eigenvalue in closed-loop operation

\( \varvec{J}_{1} ,\varvec{ J}_{2} ,\varvec{J}_{3} ,\varvec{J}_{4} \) :

Derivative matrices

A :

State space matrix

B :

Input matrix

\( \lambda = \sigma \pm j\omega_{d} \) :

Complex eigenvalue with real (\( \sigma \)) and imaginary (\( j\omega_{d} \)) components

\( \xi \) :

Damping ratio of any complex eigenvalue

F Li , F Ii , F Hi :

Low-, intermediate- and high-band central frequencies of PSS4B-POD i (Hz)

K H11 i , K H17 i :

High-band first lead–lag blocks coefficients of PSS4B-POD i (pu)

K H1 i , K H2 i :

High-band differential filter gains of PSS4B-POD i (pu)

K I11 i , K I17 i :

Intermediate-band first lead–lag blocks coefficients of PSS4B-POD i (pu)

K I1 i , K I2 i :

Intermediate-band differential filter gains of PSS4B-POD i (pu)

K L11 i , K L17 i :

Low-band first lead–lag blocks coefficients of PSS4B-POD i (pu)

K L1 i , K L2 i :

Low-band differential filter gains of PSS4B-POD i (pu)

K Li , K Ii , K Hi , K Gi :

Low-band, intermediate-band, high-band and series gains of PSS4B-POD i (pu)

K POD i :

Gain parameter of conventional POD i (pu)

K PSS k :

Gain parameter of conventional PSS k (pu)

T 1iT 2iT 3iT 4i :

Time constants of conventional POD i (s)

T 1kT 2kT 3kT 4k :

Time constants of conventional PSS k (s)

T H1 i , T H2 i , T H7 i , T H8 i :

High-band time constants of PSS4B-POD i (s)

T I1 i , T I2 i , T I7 i , T I8 i :

Intermediate-band time constants of PSS4B-POD i (s)

T L1 i , T L2 i , T L7 i , T L8 i :

Low-band time constants of PSS4B-POD i (s)

T wi :

Washout time constant of conventional POD i (s)

T wk :

Washout time constant of conventional PSS k (s)

V 1ckV 2ckV PSSk :

Algebraic variables of conventional PSS k (pu)

V 1 ck V 2 ck V PSS k :

State variables of conventional PSS k (pu)

V 1iV 2iV 3iV 4iV 5iV 6i :

Algebraic variables of PSS4B-POD i (pu)

V 1iV 2iV PODi :

Algebraic variables of conventional POD i (pu)

V 1i V 2i V 3i V 4i V 5 i V 6 i :

State variables of PSS4B-POD i (pu)

V 1 i V 2 i V PODi :

State variables of conventional POD i (pu)

V POD_LiV POD_IiV POD_Hi :

Algebraic variables of PSS4B-POD i (pu)

V POD i :

Supplementary stabilizing signal (POD output) of SVC i (pu)

V PSS k :

Output voltage of conventional PSS k (supplementary stabilizing signal) (pu)

Δy i :

Input signal of POD i (pu)

c 1, c 2 :

Positive acceleration constants (PSO)

pbest i :

Best location in history associated with the ith particle (PSO)

t max :

Maximum number of generations

w maxw min :

Inertia weight bounds (PSO)

w t :

Inertia weight (PSO)

\( \varvec{x}_{\varvec{i}}^{\varvec{t}} \), \( \varvec{v}_{\varvec{i}}^{\varvec{t}} \) :

Position and velocity of the ith individual in the tth generation

gbest :

Best location among all particles in history (PSO)

References

  1. Demello FP, Concordia C (1969) Concepts of synchronous machine stability as affected by excitation control. IEEE Trans Power Appar Syst 88:316–329

    Article  Google Scholar 

  2. Martins N, Taranto GN, Hauer JF, Gibbard MJ (2000) Impact of interactions among power system controls (Task Force No. 38.02.16). Tech. rep. Paris, França: CIGRÉ

  3. Rogers G (2000) Power system oscillations, 1st edn. Springer, Berlin

    Book  Google Scholar 

  4. Dotta D, Silva AS, Decker IC (2009) Wide-area measurements-based two-level control design considering signal transmission delay. IEEE Trans Power Syst 24:208–216

    Article  Google Scholar 

  5. Zhang Y, Bose A (2008) Design of wide-area damping controllers for interarea oscillations. IEEE Trans Power Syst 23:1136–1143

    Article  Google Scholar 

  6. Grondin R, Kamwa I, Trudel G, Taborda J, Lensuoem R, GkinLaioie L, Ginnm JP, Racine M, Baumbercer H (2000) The multi-band PSS: a flexible technology designed to meet opening markets. In: CIGRE 2000 in Paris Paper 39-201

  7. IEEE (2006) IEEE Std 421.5-2005 (Revision of IEEE Std 421.5-1992): ‘IEEE recommended practice for excitation system models for power system stability studies’. Tech. rep. IEEE

  8. Menezes MM, Araujo PB, Valle DB (2016) Design of PSS and TCSC damping controller using particle swarm optimization. J Control Autom Electr Syst 27:554–561

    Article  Google Scholar 

  9. Hingorani NG, Gyugyi L (2000) Understanding FACTS: concepts and technology of flexible AC transmission systems, 1st edn. Wiley, Hoboken

    Google Scholar 

  10. Pal B, Chaudhuri B (2005) Robust control in power systems, 1st edn. Springer, Berlin

    Google Scholar 

  11. Martins N, Macedo NJP, Lima LTG, Pinto HJCP (1993) Control strategies for multiple static VAr compensators in long distance voltage supported transmission systems. IEEE Trans Power Syst 8:1107–1117

    Article  Google Scholar 

  12. Abido MA, Abdel-Magid YL (2003) Coordinated design of a PSS and an SVC-based controller to enhance power system stability. Int J Electr Power Energy Syst 25:695–704

    Article  Google Scholar 

  13. Fallahi H, Aghamohammadi MR, Parizad A, Mohamadi A (2009) Enhancing power system oscillation damping using coordination between PSS and SVC. In: 2009 International conference on electric power and energy conversion systems, (EPECS). pp 1–7

  14. Mondal D, Chakrabarti A, Sengupta A (2012) Optimal placement and parameter setting of SVC and TCSC using PSO to mitigate small signal stability problem. Int J Electr Power Energy Syst 42:334–340

    Article  Google Scholar 

  15. Simfukwe DD, Pal BC, Jabr RA, Martins N (2012) Robust and low-order design of flexible ac transmission systems and power system stabilisers for oscillation damping. IET Gener Transm Distrib 6:445–452

    Article  Google Scholar 

  16. Grondin R, Kamwa I, Trudel G, Gerin-Lajoie L, Taborda J (2003) Modeling and closed-loop validation of a new PSS concept, the multi-band PSS. In: 2003 IEEE power engineering society general meeting (IEEE Cat. No.03CH37491). vol 3, p 1809

  17. Kamwa I, Grondin R, Trudel G (2005) IEEE PSS2B versus PSS4B: the limits of performance of modern power system stabilizers. IEEE Trans Power Syst 20:903–915

    Article  Google Scholar 

  18. Rimorov D, Heniche A, Kamwa I, Babaei S, Stefopolous G, Fardanesh B (2017) Dynamic performance improvement of New York state power grid with multi-functional multi-band power system stabiliser-based wide-area control. IET Gener Transm Distrib 11:4537–4545

    Google Scholar 

  19. Charmi MK, Amraee T (2018) Wide area damping of electromechanical low frequency oscillations using phasor measurement data. Int J Electr Power Energy Syst 99:183–191

    Article  Google Scholar 

  20. Rimorov D, Kamwa I, Joós G (2015) Model-based tuning approach for multi-band power system stabilisers PSS4B using an improved modal performance index. IET Gener Transm Distrib 9:2135–2143

    Article  Google Scholar 

  21. Khodabakhshian A, Hemmati R, Moazzami M (2013) Multi-band power system stabilizer design by using CPCE algorithm for multi-machine power system. Electr Power Syst Res 101:36–48

    Article  Google Scholar 

  22. Sumanbabu B, Mishra S, Panigrahi BK, Venayagamoorthy GK (2007) Robust tuning of modern power system stabilizers using bacterial foraging algorithm. In: 2007 IEEE congress on evolutionary computation. pp 2317–2324

  23. Ramirez JM, Correa RE, Hernandez DC (2012) A strategy to simultaneously tune power system stabilizers. Int J Electr Power Energy Syst 43:818–829

    Article  Google Scholar 

  24. Krishan R, Verma A (2015) An efficient approach to tune modern power system stabilizers using harmony search. In: 2015 Annual IEEE India conference (INDICON). pp 1–6

  25. Peres W, Silva Júnior IC, Passos Filho JA (2018) Gradient based hybrid metaheuristics for robust tuning of power system stabilizers. Int J Electr Power Energy Syst 95:47–72

    Article  Google Scholar 

  26. Wang D, Ma N, Wei M, Liu Y (2018) Parameters tuning of power system stabilizer PSS4B using hybrid particle swarm optimization algorithm. Int Trans Electr Energy Syst 28:e2598

    Article  Google Scholar 

  27. Kundur P (1994) Power system stability and control, 1st edn. McGraw-Hill, New York

    Google Scholar 

  28. Sauer P, Pai MA (1998) Power system dynamics and stability. Prentice Hall, Upper Saddle River

    Google Scholar 

  29. Ambriz-Perez H, Acha E, Fuerte-Esquivel CR (2000) Advanced SVC models for Newton–Raphson load flow and Newton optimal power flow studies. IEEE Trans Power Syst 15:129–136

    Article  Google Scholar 

  30. Deckmann SM, da Costa VF (1994) A power sensitivity model for electromechanical oscillation studies. IEEE Trans Power Syst 9:965–971

    Article  Google Scholar 

  31. Furini MA, Pereira ALS, Araujo PB (2011) Pole placement by coordinated tuning of power system stabilizers and FACTS-POD stabilizers. Int J Electr Power Energy Syst 33:615–622

    Article  Google Scholar 

  32. Milano F (2010) Power system modelling and scripting, 1st edn. Springer, Berlin

    Book  Google Scholar 

  33. Liu M, Dassios I, Tzounas G, Milano F (2019) Stability analysis of power systems with inclusion of realistic-modeling WAMS delays. IEEE Trans Power Syst 34:627–636

    Article  Google Scholar 

  34. Castro MS, Ayres HM, da Costa VF, da Silva LCP (2007) Impacts of the SSSC control modes on small-signal and transient stability of a power system. Electr Power Syst Res 77:1–9

    Article  Google Scholar 

  35. Pota HR (2018) The essentials of power system dynamics and control, 1st edn. Springer, Berlin

    Book  Google Scholar 

  36. Simo JB, Kamwa I, Trudel G, Tahan S (1996) Validation of a new modal performance measure for flexible controllers design. IEEE Trans Power Syst 11:819–826

    Article  Google Scholar 

  37. Peres W, Passos Filho JA, Silva Junior IC (2015) Coordinated tuning of power system stabilizers using bio-inspired algorithms. Int J Electr Power Energy Syst 64:419–428

    Article  Google Scholar 

  38. Do Bomfim ALB, Taranto GN, Falcao DM (2000) Simultaneous tuning of power system damping controllers using genetic algorithms. IEEE Trans Power Syst 15:163–169

    Article  Google Scholar 

  39. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: 1995 Proceedings of the IEEE international conference on neural networks. vol 4, pp 1942–1948

  40. Abido MA (2002) Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans Energy Convers 17:406–413

    Article  Google Scholar 

  41. Dill GK, Silva AS (2012) Robust design of power system controllers based on optimization of pseudospectral functions. IEEE Trans Power Syst 28:1756–1765

    Article  Google Scholar 

  42. Shayeghi H, Safari A, Shayanfar HA (2010) PSS and TCSC damping controller coordinated design using PSO in multi-machine power system. Energy Convers Manag 51:2930–2937

    Article  Google Scholar 

  43. Yang XS (2008) Nature-inspired metaheuristic algorithms, 1st edn. Luniver Press, Cambridge

    Google Scholar 

  44. Klein M, Rogers GJ, Kundur P (1991) A fundamental study of inter-area oscillations in power systems. IEEE Trans Power Syst 6:914–921

    Article  Google Scholar 

  45. Canizares C, Fernandes T, Geraldi E, Gerin-Lajoie L, Gibbard M, Chair IH, Kersulis J, Kuiava R, Lima L, DeMarco F et al (2017) Benchmark models for the analysis and control of small-signal oscillatory dynamics in power systems. IEEE Trans Power Syst 32:715–722

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the following Brazilian Agencies: FAPEMIG (APQ-02245-18), CNPq and Capes (Finance Code 001). Besides, the technical support from GOCES (Optimization, Control and Power System Stability Research GroupUFSJBrazil) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley Peres.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

This appendix presents the parameters of the multi-band stabilizer obtained from central frequencies and their associated gains. According to [16], from central frequencies \( \left[ {\begin{array}{*{20}c} {F_{Li} } & {F_{Ii} } & {F_{Hi} } \\ \end{array} } \right] \) and gains \( \left[ {\begin{array}{*{20}c} {K_{Li} } & {K_{Ii} } & {\begin{array}{*{20}c} {K_{Hi} } & {K_{Gi} } \\ \end{array} } \\ \end{array} } \right] \) in Fig. 8, it is possible to define the simplified control structure depicted in Fig. 9 by using Eqs. (A.1) to (A.5):

$$ T_{{L2{\text{i}}}} = T_{{L7{\text{i}}}} = \frac{1}{{2 \cdot \pi \cdot F_{Li} \cdot \sqrt R }} $$
(A.1)
$$ T_{{L1{\text{i}}}} = T_{{L2{\text{i}}}} /R $$
(A.2)
$$ T_{{L8{\text{i}}}} = T_{{L7{\text{i}}}} \cdot R $$
(A.3)
$$ K_{{L1{\text{i}}}} = K_{{L2{\text{i}}}} = \frac{{R^{2} + R}}{{R^{2} - 2R + 1}} $$
(A.4)
$$ K_{{L11{\text{i}}}} = K_{{L17{\text{i}}}} = 1, $$
(A.5)

where the constant R is set to 1.2 and it controls the bandwidth. These equations are associated with the low band, and they can be directly extended for other bands.

Appendix B

This appendix presents the two-area four-generator multi-machine system data used in the case study on 100 MVA and 60 Hz base. The base case without SVC is obtained from [28].

Transmission line data are presented in Table 7, in which R is the series resistance (pu), X is the series reactance (pu) and B is the total shunt susceptance (pu).

Table 7 Transmission line data

Table 8 presents the load-flow results without the SVC taken from [28]. For the load-flow solution, node 4 is chosen as the swing bus. Voltages and powers are given in (pu) and phase angles are given in (degrees).

Table 8 Load-flow results for the system—without SVC

In order to control the voltage at node 11 and to improve the power system dynamic performance, one SVC is allocated in the system. The goal is to find the steady-state value for bSVC so that \( V_{11} = 1.01 {\text{pu}} \). By applying the power flow approach described in section 2.1 [29], the obtained solution is \( b_{\text{SVC}} = 1.00 {\text{pu}} \). Also, it is one of the initial conditions required for power system linearization. After including the SVC at node 11, the new load-flow results are presented in Table 9.

Table 9 Load-flow results for the system—with SVC

The dynamic machine data, excitation system data and SVC dynamic data are given in Tables 10, 11 and 12. Reactances are given in (pu), inertia constants (H) are given in (s), damping constants are given in (pu), gains and time constants are given in (pu) and (s), respectively.

Table 10 Machine data
Table 11 Excitation system data
Table 12 SVC data

In order to evaluate the performance of POD controllers, an additional operating condition which has not been used in the project is taken into account. In this new operating condition, a simple generation redispatch has been conducted. For this purpose, Pg1 and Pg2 (area 1) were set to 600 MW and Pg3 (area 2) was set to 800 MW. The fourth generator is the swing one. It is important to emphasize the need for applying the methodology proposed in [29] to calculate the new value of bSVC so that \( V_{11} = 1.01 {\text{pu}} \). The obtained value for this additional operating condition is \( b_{\text{SVC}} = 0.8548 {\text{pu}} \). Table 13 presents the new power flow solution.

Table 13 Load-flow results for the system—with SVC—generation redispatch

Appendix C

This appendix presents the control parameters optimally adjusted. Gains are given in (pu), time constants in (s) and frequencies in (Hz). The optimized values are presented in Tables 14 and 15.

Table 14 Conventional SVC-POD
Table 15 Proposed PSS4B-SVC-POD

Appendix D

In order to obtain the linearized system of equations (see Sect. 2.10), the numerical perturbation approach [35] has been employed in this paper. However, Taylor series expansion can also be used to obtain the analytical partial derivatives, as presented in this appendix.

4.1 Linearization of P Gk and Q Gk

$$ \begin{aligned} & \Delta P_{Gk} = \left[ {\frac{{\partial P_{Gk} }}{{\partial \delta_{k} }}} \right] \cdot \Delta \delta_{k} + \left[ {\frac{{\partial P_{Gk} }}{{\partial \theta_{k} }}} \right] \cdot \Delta \theta_{k} + \left[ {\frac{{\partial P_{Gk} }}{{\partial E_{qk}^{'} }}} \right] \cdot \Delta E_{qk}^{'} + \left[ {\frac{{\partial P_{Gk} }}{{\partial V_{k} }}} \right] \cdot \Delta V_{k} \\ & \left[ {\frac{{\partial P_{Gk} }}{{\partial \delta_{k} }}} \right] = \left[ { - \frac{{\partial P_{Gk} }}{{\partial \theta_{k} }}} \right] = \frac{{E_{qk}^{'} \cdot V_{k} \cdot { \cos }\left( {\delta_{k} - \theta_{k} } \right)}}{{X_{dk}^{'} }} + V_{k}^{2} \cdot \left( {\frac{1}{{X_{qk} }} - \frac{1}{{X_{dk}^{'} }}} \right) \cdot { \cos }2\left( {\delta_{k} - \theta_{k} } \right) \\ & \left[ {\frac{{\partial P_{Gk} }}{{\partial E_{qk}^{'} }}} \right] = \frac{{V_{k} \cdot {\text{sen}}\left( {\delta_{k} - \theta_{k} } \right)}}{{X_{dk}^{'} }} \\ & \left[ {\frac{{\partial P_{Gk} }}{{\partial V_{k} }}} \right] = \frac{{E_{qk}^{'} \cdot { \sin }\left( {\delta_{k} - \theta_{k} } \right)}}{{X_{dk}^{'} }} + V_{k} \cdot \left( {\frac{1}{{X_{qk} }} - \frac{1}{{X_{dk}^{'} }}} \right) \cdot { \sin }2\left( {\delta_{k} - \theta_{k} } \right) \\ \end{aligned} $$
(D.1)
$$ \begin{aligned} & \Delta Q_{Gk} = \left[ {\frac{{\partial Q_{Gk} }}{{\partial \delta_{k} }}} \right] \cdot \Delta \delta_{k} + \left[ {\frac{{\partial Q_{Gk} }}{{\partial \theta_{k} }}} \right] \cdot \Delta \theta_{k} + \left[ {\frac{{\partial Q_{Gk} }}{{\partial E_{qk}^{'} }}} \right] \cdot \Delta E_{qk}^{'} + \left[ {\frac{{\partial Q_{Gk} }}{{\partial V_{k} }}} \right] \cdot \Delta V_{k} \\ & \left[ {\frac{{\partial Q_{Gk} }}{{\partial \delta_{k} }}} \right] = \left[ { - \frac{{\partial Q_{Gk} }}{{\partial \theta_{k} }}} \right] = - \frac{{E_{qk}^{'} \cdot V_{k} \cdot {\text{sen}}\left( {\delta_{k} - \theta_{k} } \right)}}{{X_{dk}^{'} }} - V_{k}^{2} \cdot \left( {\frac{1}{{X_{qk} }} - \frac{1}{{X_{dk}^{'} }}} \right) \cdot {\text{sen}}2\left( {\delta_{k} - \theta_{k} } \right) \\ & \left[ {\frac{{\partial Q_{Gk} }}{{\partial E_{qk}^{'} }}} \right] = \frac{{V_{k} \cdot { \cos }\left( {\delta_{k} - \theta_{k} } \right)}}{{X_{dk}^{'} }} \\ & \left[ {\frac{{\partial Q_{Gk} }}{{\partial V_{k} }}} \right] = \frac{{E_{qk}^{'} \cdot { \cos }\left( {\delta_{k} - \theta_{k} } \right)}}{{X_{dk}^{'} }} - \frac{{2V_{k} }}{{X_{dk}^{'} }} - V_{k} \cdot \left( {\frac{1}{{X_{qk} }} - \frac{1}{{X_{dk}^{'} }}} \right) \cdot \left[ {1 - { \cos }2\left( {\delta_{k} - \theta_{k} } \right)} \right] \\ \end{aligned} $$
(D.2)

4.2 Linearization of \( f_{1k} = \dot{\delta }_{k} \)

$$ \Delta \dot{\delta }_{k} = \left[ {\omega_{s} } \right] \cdot \Delta \omega_{puk} $$
(D.3)

4.3 Linearization of \( f_{2k} = \Delta \dot{\omega }_{puk} \)

$$ \Delta \dot{\omega }_{puk} = \left[ {\frac{1}{{2H_{k} }}} \right] \cdot \Delta P_{mk} + \left[ { - \frac{1}{{2H_{k} }}} \right] \cdot \Delta P_{Gk} + \left[ { - \frac{D}{{2H_{k} }}} \right] \cdot \Delta \omega_{puk} $$
(D.4)

where \( \Delta P_{Gk} \) is given by equation (D.1).

4.4 Linearization of I dk

$$ \begin{aligned} & \Delta I_{dk} = \left[ {\frac{{\partial I_{dk} }}{{\partial \delta_{k} }}} \right] \cdot \Delta \delta_{k} + \left[ {\frac{{\partial I_{dk} }}{{\partial \theta_{k} }}} \right] \cdot \Delta \theta_{k} + \left[ {\frac{{\partial I_{dk} }}{{\partial E_{qk}^{'} }}} \right] \cdot \Delta E_{qk}^{'} + \left[ {\frac{{\partial I_{dk} }}{{\partial V_{k} }}} \right] \cdot \Delta V_{k} \\ & \left[ {\frac{{\partial I_{dk} }}{{\partial \delta_{k} }}} \right] = \left[ { - \frac{{\partial I_{dk} }}{{\partial \theta_{k} }}} \right] = \frac{{V_{k} \cdot {\text{sen}}\left( {\delta_{k} - \theta_{k} } \right)}}{{X_{dk}^{'} }} \\ & \left[ {\frac{{\partial I_{dk} }}{{\partial E_{qk}^{'} }}} \right] = \frac{1}{{X_{dk}^{'} }} \\ & \left[ {\frac{{\partial I_{dk} }}{{\partial V_{k} }}} \right] = - \frac{{\cos \left( {\delta_{k} - \theta_{k} } \right)}}{{X_{dk}^{'} }} \\ \end{aligned} $$
(D.5)

4.5 Linearization of \( f_{3k} = \dot{E}_{qk}^{'} \)

$$ \Delta \dot{E}_{qk}^{'} = \left[ { - \frac{1}{{T_{d0k}^{'} }}} \right] \cdot \Delta E_{qk}^{'} + \left[ { - \frac{{\left( {X_{dk} - X_{dk}^{'} } \right)}}{{T_{d0k}^{'} }}} \right] \cdot \Delta I_{dk} + \left[ {\frac{1}{{T_{d0k}^{'} }}} \right] \cdot \Delta E_{FDk} , $$
(D.6)

where ΔIdk is given by Eq. (D.5).

4.6 Linearization of \( f_{4k} = \dot{E}_{FDk} \)

$$ \Delta \dot{E}_{FDk} = \left[ { - \frac{1}{{T_{Ak} }}} \right] \cdot \Delta E_{FDk} + \left[ {\frac{{K_{Ak} }}{{T_{Ak} }}} \right] \cdot \left[ {\Delta V_{{{\text{REF}}1k}} - \Delta V_{k} + \Delta V_{{{\text{PSS}}k}} } \right] $$
(D.7)

4.7 Linearization of \( f_{5i} = \dot{b}_{{{\text{SVC}}i}} \)

$$ \Delta \dot{b}_{{{\text{SVC}}i}} = \left[ { - \frac{1}{{T_{{{\text{SVC}}i}} }}} \right] \cdot \Delta b_{{{\text{SVC}}i}} + \left[ {\frac{{K_{{{\text{SVC}}i}} }}{{T_{{{\text{SVC}}i}} }}} \right] \cdot \left[ {\Delta V_{{{\text{REF}}2i}} - \Delta V_{i} + \Delta V_{{{\text{POD}}i}} } \right] $$
(D.8)

4.8 Linearization of algebraic equations associated with power system (Sect. 2.7)

$$ \begin{aligned} & g_{1j} = P_{Gj} - P_{Lj} - \mathop \sum \limits_{{m \in \varOmega_{j} }} P_{jm} = 0 \\ & \Delta P_{Gj} + \left[ { - \frac{{\partial \mathop \sum \nolimits_{{m \in \varOmega_{j} }} P_{jm} }}{{\partial \theta_{j} }}} \right] \cdot \Delta \theta_{j} + \left[ { - \frac{{\partial \mathop \sum \nolimits_{{m \in \varOmega_{j} }} P_{jm} }}{{\partial \theta_{m} }}} \right] \cdot \Delta \theta_{m} + \left[ { - \frac{{\partial \mathop \sum \nolimits_{{m \in \varOmega_{j} }} P_{jm} }}{{\partial V_{j} }}} \right] \cdot \Delta V_{j} + \left[ { - \frac{{\partial \mathop \sum \nolimits_{{m \in \varOmega_{j} }} P_{jm} }}{{\partial V_{m} }}} \right] \cdot \Delta V_{m} = 0 \\ \end{aligned} $$
(D.9)

where \( \Delta P_{Gj} \ne 0 \) for generator busses, and it is given by equation (D.1). The other derivatives are employed in power flow tools, and, for the sake of brevity, they can be obtained from the literature [28]:

$$ \begin{aligned} & g_{2j} = Q_{Gj} - Q_{Lj} - \mathop \sum \limits_{{m \in \varOmega_{j} }} Q_{jm} = 0 \\ & \Delta Q_{Gj} + \left[ { - \frac{{\partial \mathop \sum \nolimits_{{m \in \varOmega_{j} }} Q_{jm} }}{{\partial \theta_{j} }}} \right] \cdot \Delta \theta_{j} + \left[ { - \frac{{\partial \mathop \sum \nolimits_{{m \in \varOmega_{j} }} Q_{jm} }}{{\partial \theta_{m} }}} \right] \cdot \Delta \theta_{m} + \left[ { - \frac{{\partial \mathop \sum \nolimits_{{m \in \varOmega_{j} }} Q_{jm} }}{{\partial V_{j} }}} \right] \cdot \Delta V_{j} + \left[ { - \frac{{\partial \mathop \sum \nolimits_{{m \in \varOmega_{j} }} Q_{jm} }}{{\partial V_{m} }}} \right] \cdot \Delta V_{m} + \Delta Q_{{{\text{SVC}}j}} = 0, \\ \end{aligned} $$
(D.10)

where \( \Delta Q_{Gj} \ne 0 \) for generator busses, and it is given by equation (D.2). The other derivatives are employed in power flow tools, and, for the sake of brevity, they can be obtained from the literature [28]. The term \( \Delta Q_{{{\text{SVC}}j}} \) is nonzero for busses with SVC and is given by equation (D.11).

$$ \Delta Q_{{{\text{SVC}}j}} = \left[ {2 \cdot V_{j} \cdot b_{{{\text{SVC}}i}} } \right] \cdot \Delta V_{j} + \left[ {V_{j}^{2} } \right] \cdot \Delta b_{{{\text{SVC}}i}} $$
(D.11)

4.9 Linearization of equations associated with the controllers

The linearization of the differential–algebraic system of equations associated with the controllers (see Sects. 2.8, 2.9 and 3.2) is very simple. For instance, Eq. (15), repeated in Eq. (D.12), can be easily linearized as presented in Eq. (D.13):

$$ f_{6k} = \frac{{{\text{d}}V_{1ck}^{'} }}{{{\text{d}}t}} = - \frac{{V_{1ck}^{'} }}{{T_{wk} }} + \frac{{K_{{{\text{PSS}}k}} }}{{T_{wk} }} \cdot \Delta \omega_{puk} $$
(D.12)
$$ \Delta \dot{V}_{1ck}^{'} = \left[ { - \frac{1}{{T_{wk} }}} \right] \cdot \Delta V_{1ck}^{'} + \left[ {\frac{{K_{{{\text{PSS}}k}} }}{{T_{wk} }}} \right] \cdot \Delta \omega_{puk} . $$
(D.13)

As the reader can see, these equations are already linear. The nonlinearity can appear in equations that are a function of the input signal Δy (like power flows). In this case, the partial derivatives of Δy can be obtained from the literature [3, 28, 35].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peres, W. Multi-band power oscillation damping controller for power system supported by static VAR compensator. Electr Eng 101, 943–967 (2019). https://doi.org/10.1007/s00202-019-00830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00830-9

Keywords

Navigation