Skip to main content
Log in

An alternative model for aerial multiconductor transmission lines excited by external electromagnetic fields based on the method of characteristics

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a model of aerial multiconductor transmission lines with frequency-dependent electrical parameters for the simulation of time-domain electromagnetic transients due to incident electromagnetic fields is presented. The frequency dependency of the electrical parameters is taken into account using the penetration impedance; this allows applying the method of characteristics without having to resort to modal transformations. With this alternative approach, transforming the transmission line partial differential equations to ordinary differential equations is performed in the phase domain, which simplifies the mathematical development of the method and also the numerical solution. The validity of the proposed model is shown with five study cases involving different transmission systems and excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Taylor CD, Satterwhite RS, Harrison CW (1965) The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field. IEEE Trans Antennas Propag 13(6):987–989

    Article  Google Scholar 

  2. Agrawal AK, Price HJ, Gurbaxani SH (1980) Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field. IEEE Trans Electromag Compat 22(2):119–129

    Article  Google Scholar 

  3. Rachidi F (1993) Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation fields. IEEE Trans Electromagn Compat 35(3):404–407

    Article  Google Scholar 

  4. Rusck S (1958) Induced lightning overvoltages on power transmission lines with special reference to the overvoltage protection of low voltage networks. Trans R Inst Technol 120:1–118

    Google Scholar 

  5. Chowdhuri P, Gross ETB (1967) Voltage surges induced on overhead lines by lighting strokes. Proc IEE 114(12):1899–1907

    Google Scholar 

  6. Cooray V (1994) Calculating lightning-induced overvoltages in power lines: a comparison of two coupling models. IEEE Trans Electromagn Compat 36(3):179–182

    Article  Google Scholar 

  7. Nucci CA, Rachidi F, Ianoz M, Mazzetti C (1995) Comparison of two coupling models for lightning-induced overvoltage calculations. IEEE Trans Power Deliv 10(1):330–339

    Article  Google Scholar 

  8. Andreotti A, Pierno A, Rakov VA (2015) A new tool for calculation of lightning-induced voltages in power systems—part I: development of circuit model. IEEE Trans Power Deliv 30(1):326–333

    Article  Google Scholar 

  9. Liu X, Cui X, Qi L (2012) Calculation of lightning-induced over voltages on overhead lines based on DEPACT macromodel using circuit simulation software. IEEE Trans Electromagn Compat 54(4):837–849

    Article  Google Scholar 

  10. Brignone M, Delfino F, Procopio R, Rossi M, Rachidi F (2017) Evaluation of power system lightning performance, part I—model and numerical solution using the PSCAD-EMTDC platform. IEEE Trans Electromagn Compat 59(1):137–145

    Article  Google Scholar 

  11. Abouzeid SI, Shabib G, El Dein Mohamed AZ (2015) Induced voltages on overhead transmission lines because of nearby included lightning channel. IET Gener Transm Distrib 9(13):1672–1680

    Article  Google Scholar 

  12. Tan EL, Yang Z (2017) Non-uniform time-step FLOD-FDTD method for multiconductor transmission lines including lumped elements. IEEE Trans Electromagn Compatib 59(6):1983–1992

    Article  Google Scholar 

  13. Paolone M, Nucci CA, Rachidi F (2001) A new finite difference time domain scheme for the evaluation of lightning induced overvoltage on multiconductor overhead lines. In: Proceedings of international conference on power system transaction, pp 596–602

  14. Ames WF (1992) Numerical methods for partial differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  15. Ramirez A, Naredo JL, Moreno P (2005) Full frequency-dependent line model for electromagnetic transient simulation including lumped and distributed sources. IEEE Trans Power Deliv 20(1):292–299

    Article  Google Scholar 

  16. Garcia-Sanchez JL, Moreno P et al (2016) Aerial line model for power system electromagnetic transients simulation. IET Gener Transm Distrib 10(7):1597–1604

    Article  Google Scholar 

  17. Branin FH (1967) Transient analysis of lossless transmission lines. Proc IEEE 55(11):2012–2013

    Article  Google Scholar 

  18. Martí JT (1982) Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations. IEEE Trans Power Appar Syst 101(1):147–157

    Article  Google Scholar 

  19. Morched A, Gustavsen B, Tartibi M (1999) A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables. IEEE Trans Power Deliv 14(3):1032–1038

    Article  Google Scholar 

  20. Moreno P, Ramirez A (2008) Implementation of the numerical Laplace transform: a review. IEEE Trans Power Deliv 23(4):2599–2609

    Article  Google Scholar 

  21. Nucci CA, Rachidi F, Ianoz MV (1993) Lightning-induced voltages on overhead lines. IEEE Trans Electromagn Compat 35(1):75–85

    Article  Google Scholar 

  22. Barbosa CF, Saldanha JO (2007) An approximate time-domain formula for the calculation of the horizontal electric field from lightning. IEEE Trans Electromagn Compat 49(3):593–601

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Avisaí Sánchez-Alegria thanks the scholarship granted by the Consejo Nacional de Ciencia y Tecnología (Grand No. CVU 569017) of México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Moreno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, the recursive convolution algorithm based on the method of the auxiliary differential equation is revisited. Using (4) and (5b) can be expressed in the Laplace domain as follows

$$ {\varvec{\uppsi}}(x,s) = \sum\limits_{i = 1}^{N} {{\varvec{\uppsi}}_{i} (x,s)} $$
(25a)

where

$$ {\varvec{\uppsi}}_{i} (x,s) = \left( {\frac{{{\mathbf{K}}_{i} }}{{s - p_{i} }}} \right)\,{\mathbf{I}}(x,s) $$
(25b)

From (23b), it follows that

$$ s{\varvec{\uppsi}}_{i} (x,s) - p_{i} {\varvec{\uppsi}}_{i} (x,s) = \,{\mathbf{K}}_{i} {\mathbf{I}}(x,s) $$
(26)

Transforming (24a, 27) to the time domain gives

$$ \frac{d}{dt}{\varvec{\uppsi}}_{i} (x,t) - p_{i} {\varvec{\uppsi}}_{i} (x,t) = \,{\mathbf{K}}_{i} {\mathbf{i}}(x,t) $$
(27)

The auxiliary differential Eq. (27) can be solved applying several finite-difference schemes; here, it is used the backward-difference formula; therefore, it can be written

$$ \frac{{{\varvec{\uppsi}}_{i} (x,t) - {\varvec{\uppsi}}_{i} (x,t - \Delta t)}}{\Delta t} - p_{i} {\varvec{\uppsi}}_{i} (x,t) = {\mathbf{K}}_{i} {\mathbf{i}}(x,t) $$
(28)

Solving for Ψi(x,t) gives

$$ {\varvec{\uppsi}}_{i} (x,t) = \frac{1}{{1 - p_{i} \Delta t}}{\varvec{\uppsi}}_{i} (x,t - \Delta t) + \frac{{\Delta t{\kern 1pt} }}{{1 - p_{i} \Delta t}}{\mathbf{K}}_{i} {\mathbf{i}}(x,t) $$
(29)

Finally, using (29) expression (5b) becomes

$$ {\varvec{\uppsi}}(x,t) = \sum\limits_{i = 1}^{N} {\frac{1}{{1 - p_{i} \Delta t}}{\varvec{\uppsi}}_{i} (x,t - \Delta t)} + \left( {\sum\limits_{i = 1}^{N} {\frac{\Delta t}{{1 - p_{i} \Delta t}}{\mathbf{K}}_{i} } } \right){\mathbf{i}}(x,t). $$
(30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Alegría, A., Moreno, P., Loo-Yau, J.R. et al. An alternative model for aerial multiconductor transmission lines excited by external electromagnetic fields based on the method of characteristics. Electr Eng 101, 719–731 (2019). https://doi.org/10.1007/s00202-019-00819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00819-4

Keywords

Navigation