Skip to main content
Log in

Geometrical optimization of SRM on operating mode for automotive application

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper deals with double saliency switched reluctance motor for automotive application by offering simultaneously a design solution to the drawbacks of torque ripples and emitted noise caused by the important radial efforts. The work concerns the optimization of the motor structure, the main objectives is the reduction of the first harmonics of torque and radial force applied on the stator teeth. This geometric optimization is performed on operating points where the instantaneous computation of supply current is taken into account to resolve simultaneously both problems. This operating point is defined as torque–speed point by considering the instantaneous characteristics of the machine when the steady state is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Husain I (2002) Minimization of torque ripple in SRM drives. IEEE Trans Ind Electron 49(1):28–39

    Article  Google Scholar 

  2. Cameron DE, Lang JH, Umans SD (1992) The origin and reduction of acoustic noise in doubly salient variable-reluctance motors. IEEE Trans Ind Appl 28(6):1250–1255

    Article  Google Scholar 

  3. Pollock C, Wu CY (1995) Acoustic noise cancellation techniques for switched reluctance drives. In: Industry applications conference. Thirtieth IAS annual meeting, IAS’95, conference record of the 1995 IEEE, vol 1, pp 448–455

  4. Yoshida A, Tanaka D, Miki I (2005) A study on the reduction of vibration and acoustic noise for switched reluctance motor. In: Proceedings of the eighth international conference on electrical machines and systems, 2005. ICEMS 2005, vol 1, pp 520–523

  5. Kolli A, Krebs G, Mininger X, Marchand C (2012) Impact of command parameters on efficiency, torque ripple and vibrations for switched reluctance motor. In: XXth international conference on electrical machines (ICEM), vol 2012, pp 2975–2980

  6. Hofmann A, Al-Dajani A, Bosing M, De Doncker RW (2013) Direct instantaneous force control: a method to eliminate mode-0-borne noise in switched reluctance machines. In: electric machines drives conference (IEMDC). IEEE international, vol 2013, pp 1009–1016

  7. Fahimi B, Suresh G, Rahman KM, Ehsani M (1998) Mitigation of acoustic noise and vibration in switched reluctance motor drive using neural network based current profiling. In: Industry applications conference, 1998. Thirty-third IAS annual meeting. The 1998 IEEE, vol 1, pp 715–722

  8. Suryadevara R, Fernandes BG (2013) Control techniques for torque ripple minimization in switched reluctance motor: an overview, pp 24–29

  9. Lecointe JP (2003) Etude et réduction active du bruit d’origine magnétique des machines à réluctance variable à double saillance, Artois

  10. Mininger X (2005) Réduction des vibrations des machines à réluctance variable à l’aide d’actionneurs piézoélectriques. Thesis, École normale supérieure de Cachan-ENS Cachan

  11. Tang Y (1999) Switched reluctance motor with damping windings, US6008561 A, 28 Dec 1999

  12. Besbes M, Picod C, Camus F, Gabsi M (1998) Influence of stator geometry upon vibratory behaviour and electromagnetic performances of switched reluctance motors. IEE Proc Electr Power Appl 145(5):462–468

    Article  Google Scholar 

  13. Hong J-P, Ha K-H, Lee J (2002) Stator pole and yoke design for vibration reduction of switched reluctance motor. IEEE Trans Magn 38(2):929–932

    Article  Google Scholar 

  14. Randall SP (2000) Noise reduction in reluctance machines, US6072260 A, 06 Jun 2000

  15. Ayari S (2000) Etude des vibrations des machines à reluctance variable: influence des caractéristiques géométriques et de l’excentricité rotorique. Ecole Normale Superieure de Cachan, France

    Google Scholar 

  16. Anwar MN, Husain I (2000) Design perspectives of a low acoustic noise switched reluctance machine. In: Industry applications conference, 2000. Conference record of the 2000 IEEE, vol 1, pp 99–106

  17. Rasmussen PO, Andreasen JH, LaBrush EC (2005) Interlaminated damping—a method for reduction of vibration and acoustic noise for switched reluctance machines? In: Industry applications conference, 2005. Fourtieth IAS annual meeting. Conference record of the 2005, vol 3, pp 1531–1539

  18. Balaji M, Kamaraj V (2011) Design optimization of switched reluctance machine using particle swarm optimization. In: 2011 1st international conference on electrical energy systems (ICEES), pp 164–169

  19. Naayagi RT, Kamaraj V (2005) Modeling and design of shape optimized SRM with reduced ripple. In: Proceedings of the IEEE symposium on emerging technologies, 2005, pp 399–404

  20. Hur J, Kang GH, Lee JY, Hong JP, Lee BK (2004) Design and optimization of high torque, low ripple switched reluctance motor with flux barrier for direct drive. In: Conference record of the 2004 IEEE industry applications conference, 2004. 39th IAS annual meeting, vol 1

  21. Choi YK, Yoon HS, Koh CS (2007) Pole-shape optimization of a switched-reluctance motor for torque ripple reduction. IEEE Trans Magn 43(4):1797–1800

    Article  Google Scholar 

  22. Desai PC, Krishnamurthy M, Schofield N, Emadi A (2010) Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation. IEEE Trans Ind Electron 57(2):649–659

    Article  Google Scholar 

  23. Matlab MathWorks (2016) Optimization software—optimization toolbox (Online). https://uk.mathworks.com/products/optimization/index.html. Accessed 05 Oct 2016

  24. Meeker D (2010) Finite element method magnetics (version 4.2), user’s manual, Oct-2010

  25. Belhadi M (2015) Étude de machines à réluctance variable pour une application de traction électrique? Réduction des ondulations de couple et des efforts radiaux

  26. Besbes M, Multon B (2004) MRVSim code? Logiciel de simulation pour l’aide au dimensionnement des MRVDS et de convertisseur, IDDN.FR.001.430010.000.S.C.2004.000.30645

  27. Belhadi M, Krebs G, Marchand C, Hannoun H, Mininger X (2015) Switched reluctance motor with magnetic slot wedges for automotive traction application. Eur Phys J Appl Phys 72(3):30901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M’Hamed Belhadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhadi, M., Krebs, G., Marchand, C. et al. Geometrical optimization of SRM on operating mode for automotive application. Electr Eng 100, 303–310 (2018). https://doi.org/10.1007/s00202-016-0504-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0504-0

Keywords

Navigation