Skip to main content
Log in

Optimized pure hardware FPGA-based implementation of active disturbance rejection control

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The optimized pure hardware fixed-point implementation of the active disturbance rejection control algorithm on the field programmable gate array (FPGA) is presented in this paper. The optimization of the FPGA resource occupancy is provided with the simulation-based algorithm refinement, the selection of the optimal hardware structure and the modularity principle. In contrast to the conventional very high speed integrated circuit hardware description language (VHDL) approach, the implementation of the proposed optimal hardware design is realized by the system-level design tool, i.e. Xilinx’s System Generator\(^{\mathrm{TM}}\) (XSG). Our methodology demonstrates distinct advantages such as the shorter development time and a simpler optimization procedure of the FPGA resource occupancy. Further, automatically converting the specified XSG model into the VHDL code significantly reduces the coding efforts. The experimental results largely coincide with the simulations and confirm satisfactory system performances in the different working conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Han J (2009) From PID to active disturbance rejection control. IEEE Trans Ind Electron 56(3):900–906. doi:10.1109/TIE.2008.2011621

    Article  Google Scholar 

  2. Feng G, Liu YF, Huang L (2004) A new robust algorithm to improve the dynamic performance on the speed control of induction motor Drive. IEEE Trans Power Electron 19(6):1614–1627. doi:10.1109/TPEL.2004.836619

    Article  Google Scholar 

  3. Przybyła M, Kordasz M, Madoński R, Herman P, Sauer P (2012) Active Disturbance Rejection Control of a 2DOF manipulator with significant modeling uncertainty. Bull Polish Acad Sci Techn Sci 60(3):509–520. doi:10.2478/v10175-012-0064-z

    Google Scholar 

  4. Vincent J, Morris D, Usher N, Gao Z, Zhao S, Nicoletti A, Zheng Q (2011) On active disturbance rejection based control design for superconducting RF cavities. Nuclear Instrum Methods Phys Res A 643:11–16. doi:10.1016/j.nima.2011.04.033

    Article  Google Scholar 

  5. Xia Y, Dai L, Fu M, Li C, Wang C (2014) Application of active disturbance rejection control in tank gun control system. J Frankl Inst 351(4):2299–2314. doi:10.1016/j.jfranklin.2013.02.003

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang Y, Xue W (2014) Active disturbance rejection control: methodology and theoretical analysis. ISA Trans 53(4):963–976. doi:10.1016/j.isatra.2014.03.003

    Article  MathSciNet  Google Scholar 

  7. Dubey R (2009) Introduction to embedded system design using field programmable gate arrays. Springer, London

    Google Scholar 

  8. Hsu F, Lee B (2011) FPGA-based adaptive PID control of a DC motor driver via sliding-mode approach. Expert Syst Appl 38:11866–11872. doi:10.1016/j.eswa.2011.02.185

    Article  Google Scholar 

  9. Hasanien HM (2011) FPGA implementation of adaptive ANN controller for speed regulation of permanent magnet stepper motor drives. Energy Convers Manag 52(2):1252–1257. doi:10.1016/j.enconman.2010.09.021

    Article  Google Scholar 

  10. Astarloa A, Lázaro J, Bidarte U, Jiménez J, Zuloaga A (2009) FPGA technology for multi-axis control systems. Mechatronics 19(2):258–268. doi:10.1016/j.mechatronics.2008.09.001

    Article  Google Scholar 

  11. Martinez M, Franco A, Herrera G, Soto O (2013) Multi-axis motion controller for robotic applications implemented on an FPGA. Int J Adv Manuf Technol 67:2367–2376. doi:10.1007/s00170-012-4656-4

    Article  Google Scholar 

  12. Monmasson E, Cirstea M (2007) FPGA design methodology for industrial control systems—a review. IEEE Trans Ind Electron 54(4):1824–1842. doi:10.1109/TIE.2007.898281

    Article  Google Scholar 

  13. Fang Z, Carletta JE, Veillette RJ (2005) A methodology for FPGA-based control implementation. IEEE Trans Control Syst Technol 13(6):977–987. doi:10.1109/TCST.2005.857411

    Article  Google Scholar 

  14. Constantinides G, Cheung P, Luk W (2004) Synthesis and optimization of DSP algorithms (Chapter 3: Peak value estimation). Kluwer Academic Publishers, New York

    Google Scholar 

  15. Sun B, Gao Z (2005) A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter. IEEE Trans Ind Electron 52(5):1271–1277. doi:10.1109/TIE.2005.855679

    Article  Google Scholar 

  16. Zhao S, Gao Z (2014) Modified active disturbance rejection control for time-delay systems. ISA Trans 53(4):882–888. doi:10.1016/j.isatra.2013.09.013

    Article  MathSciNet  Google Scholar 

  17. Zhang Y, Zhang Y, Wang J, Ma R (2013) An active disturbance rejection control of induction motor using DSP+FPGA. In: Proceedings of the IEEE 25th Chinese Control and Decision Conference (CCDC), pp 4047–4052. doi:10.1109/CCDC.2013.6561659

  18. Tollies N (2007) A versatile high performance floating-point based integrated circuit design for active disturbance rejection control. Master thesis, Clevelend State University

  19. Zheng Q, Dong L, Lee DH, Gao Z (2009) Active disturbance rejection control for MEMS gyroscopes. IEEE Trans Control Syst Technol 17(6):1432–1438. doi:10.1109/TCST.2008.2008638

    Article  Google Scholar 

  20. Zhao S, Usher N, Morris D, Vincent J (2013) Fixed-point implementation of active disturbance rejection control for superconducting radiofrequency cavities. In: Proceedings of the IEEE American Control Conference (ACC), pp 2693–2698. doi:10.1109/ACC.2013.6580241

  21. Stankovic M, Manojlovic S, Simic S, Jovanovic Z (2014) Implementation of active disturbance rejection control on FPGA. In: Presented at the International Conference on Electrical, Electronic and Computing Engineering (IcETRAN)

  22. Gao Z (2003) Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the American Control Conference (ACC), vol 6, pp 4989–4996. doi:10.1109/ACC.2003.1242516

  23. Franklin GF, Workman ML, Powell D (1997) Digital control of dynamic systems (Chapter 8: design using state-space methods), 3rd edn. Addison-Wesley Longman Publishing, Boston

    Google Scholar 

  24. Herbst G (2013) A simulative study on active disturbance rejection control (ADRC) as a control tool for practitioners. Electronics 2:246–279. doi:10.3390/electronics2030246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momir Stankovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stankovic, M., Naumovic, M., Manojlovic, S. et al. Optimized pure hardware FPGA-based implementation of active disturbance rejection control. Electr Eng 100, 111–121 (2018). https://doi.org/10.1007/s00202-016-0495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0495-x

Keywords

Navigation