Skip to main content
Log in

Novel direct optimal and indirect method for discretization of linear fractional systems

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper addresses the problem of discretization of fractional differintegrators and fractional systems in general. Two new discretization schemes are proposed—optimal direct method, and computationally inexpensive indirect method. The proposed methods are highly flexible and suitable for obtaining both general purpose and specialized, application-specific approximations. Both proposed methods outperform recently proposed approximations, as it is shown in several illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny I (1999) Fractional differential equations. Academic Press, London

    MATH  Google Scholar 

  2. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapoore

    Book  MATH  Google Scholar 

  3. Sabatier J, Agrawal OP, Tenreiro Machado JA (2007) Advances in fractional calculus. Springer, Dordrecht

    Book  MATH  Google Scholar 

  4. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York

    MATH  Google Scholar 

  5. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  6. Ma C, Hori Y (2004) The time-scaled trapezoidal integration rule for discrete fractional order controllers. Nonlinear Dyn 38: 171–180

    Article  MATH  Google Scholar 

  7. Pommier A, Sabatier J et al (2002) CRONE control of a nonlinear hydraulic actuator. Control Eng Pract 10: 391–402

    Article  Google Scholar 

  8. Sabatier J, Oustaloup A et al (2003) CRONE control of continuous linear time periodic system: application to a testing bench. ISA Trans 42: 421–436

    Article  Google Scholar 

  9. Vinagre BM, Podlubny I et al (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calc Appl Anal 3: 231–248

    MathSciNet  MATH  Google Scholar 

  10. Vinagre BM, Chen YQ, Petráš I (2003) Two direct Tustin discretization methods for fractional-order differentiator/integrator. J Franklin Inst 340: 349–362

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen YQ, Moore KL (2002) Discretization schemes for fractional order differentiators and integrators. IEEE Trans Circ Syst I Fundam Theory Appl 49(3): 363–367

    Article  MathSciNet  Google Scholar 

  12. Tseng C-C (2001) Design of fractional order digital FIR differentiators. IEEE Signal Process Lett 8(3): 77–79

    Article  Google Scholar 

  13. Ostalczyk P (2003) Fundamental properties of the fractional-order discrete-time integrator. Signal Process 83: 2367–2376

    Article  MATH  Google Scholar 

  14. Mainone G (2006) A digital, noninteger order, differentiator using Laguerre orthogonal sequences. Int J Intell Control Syst 11(2): 77–81

    Google Scholar 

  15. Barbosa RS, Tenreiro Machado JA, Silva MF (2006) Time domain design of fractional differintegrators using least-squares approximations. Signal Process 86: 2567–2581

    Article  MATH  Google Scholar 

  16. Petras I, Podlubny I et al (2002) Analogue realizations of fractional order controllers. Fakulta Berg, TU Kosice

  17. Åström KJ, Wittenmark B (1997) Computer controlled systems: theory and design, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  18. Smith JM (1987) Mathematical modeling and digital simulation for engineers and scientists, 2nd edn. Wiley, New York

    Google Scholar 

  19. Le Bihan J (1993) Novel class of digital integrators and differentiators. Electron Lett 29(11): 971–973

    Article  Google Scholar 

  20. Šekara T (2005) New transformation polynomials for discretization of analogue systems. Electr Eng 89: 137–147

    Google Scholar 

  21. Šekara TB, Stojić MR (2005) Application of the α-approximation for discretization of analogue systems. Facta Universitatis Ser Elec Energ 3:571–586. http://factaee.elfak.ni.ac.yu/fu2k53/Sekara.pdf

  22. Šekara TB, Draganović LS, Stanković MS (2002) Novel approximations for discretization of continuous systems. In: Proceedings of the XLVI ETRAN conference, vol 1. Bosnia and Herzegovina, pp 220–223 (in Serbian)

  23. Zaplatilek K, Lares M (2001) Efficient algorithms of direct and inverse first-order s-z transformations. Radioengineering 10(1): 6–10

    Google Scholar 

  24. Choo Y (2007) Computing transformation matrix for bilinear s-z transformation. IEICE Trans Fundam E90-A(4): 872–874

    Article  MathSciNet  Google Scholar 

  25. Åström KJ, Hagander P, Sterbnby J (1984) Zeros of sampled systems. IEEE Automatica 20: 31–38

    Article  MATH  Google Scholar 

  26. Bai EW, Ding Z (2000) Zeros of sampled data systems represented by FIR models. Automatica 36: 121–123

    Article  MathSciNet  MATH  Google Scholar 

  27. Šekara TB, Stanković MS (2003) Novel transformation polynomials for discretization of continuous systems. In: Proceedings of XLVII ETRAN conference, vol 1. Montenegro, pp 247–250 (in Serbian)

  28. Šekara TB (2005) Indirect application of transformation polynomials for discretization of fractional integrators (differentiators). In: Proceedings of XLIL ETRAN conference, vol 1. Montenegro, pp 234–237 (in Serbian)

  29. Šekara TB (2006) Fractional transformations with applications to control systems and electrical circuits. PhD thesis, Faculty of Electrical Engineering, University of Belgrade (in Serbian)

  30. Ratnaweera A, Halgamuge SK, Watson HC (2005) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3): 240–255

    Article  Google Scholar 

  31. Rapaić MR, Kanović Ž (2009) Time-varying PSO—convergence analysis, convergence-related parameterization and new parameter adjustment schemes. Inf Process Lett 109(11): 548–552

    Article  MATH  Google Scholar 

  32. Rapaić MR (2008) Particle swarm optimization (PSO) algorithm. http://www.mathworks.com/matlabcentral/fileexchange/22228-particle-swarm-optimization-pso-algorithm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan R. Rapaić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapaić, M.R., Šekara, T.B. Novel direct optimal and indirect method for discretization of linear fractional systems. Electr Eng 93, 91–102 (2011). https://doi.org/10.1007/s00202-011-0195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-011-0195-5

Keywords

Navigation