Skip to main content
Log in

Decentralized robust tracking control for uncertain robots

  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

To realize decentralized robust tracking control for robots with uncertain parameters, a new design method is proposed. A robust tracking controller designed by this method consists of two parts: a feedforward controller and a feedback robust controller. A feedforward control is first applied and error dynamics are introduced. For each joint error subsystem a robust controller is designed in two steps: first, a nominal controller is designed for the nominal plant to achieve desired tracking performance, then a robust compensator is added to restrain the influence of the perturbation, that is the difference of the real plant from the nominal plant. The controller designed by the proposed method is a linear time-invariant one. It is shown that robust stability and robust tracking property can be achieved by applying the controller with a sufficiently wide frequency bandwidth. An important feature of the method is that the controller parameters can be tuned on-line easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

λ max(B), λ min(B):

the maximum and minimum eigenvalues, respectively, of a symmetric positive definite matrix B

\( {\left\| x \right\|} \) :

\( = {\sqrt {x^{T} x} },{\text{ }}x \in {\Re }^{n} \)

\( {\left\| A \right\|} \) :

\( = {\sqrt {\lambda _{{\max }} {\text{(}}A^{T} A{\text{)}}} }{\text{,}}\quad A \in {\Re }^{{n \times n}} \)

References

  1. Sage HG, De Mathelin MF (1999) Robust control of robot manipulators: a survey. Int J Control 72:1498–1522

    Article  Google Scholar 

  2. Spong MW, Thorp JS (1987) Robust microprocessor control of robot manipulators. Automatica 23:373–379

    Article  Google Scholar 

  3. Spong MW (1992) On the robust control of robot manipulator. IEEE Trans Autom Control 37:1782–1786

    Article  Google Scholar 

  4. Liu G, Goldenberg AA (1996) Uncertainty decomposition-based robust control of robot manipulators. IEEE Trans Control Syst Technol 4:384–393

    Article  Google Scholar 

  5. Liu G, Goldenberg AA (1997) Robust control of robot manipulators based on dynamics decomposition. IEEE Trans Robotics Autom 13:783–789

    Article  Google Scholar 

  6. Qu Z, Dawson DM, Lim SY (1994) A new class of robust control laws for tracking of robots. Int J Robotics Res 13:355–363

    Google Scholar 

  7. Canudas De Wit C, Siciliano B, Bastin G (eds) (1996) Theory of robot control. Springer, London

  8. Slotine JE, Li W (1987) On the adaptive control of robot manipulators. Int J Robotics Res 6:49–59

    Google Scholar 

  9. Liu M (1997) Decentralized PD and robust nonlinear control for robot manipulators. J Intell Robot Syst Theory Applic 20:319–332

    Article  Google Scholar 

  10. Liu M (1999) Decentralized control of robot manipulators: nonlinear and adaptive approaches. IEEE Trans Autom Control 44:357–363

    Article  Google Scholar 

  11. Kelly R, Salgado R (1994) PD control with computed feedforward of robot manipulators: a design procedure. IEEE Trans Robotics Autom 10:566–571

    Article  Google Scholar 

  12. Tang Y, Guerrero G (1998) Decentralized robust control of robot manipulators. In: Proceedings of the American Control Conference (ACC’98), Philadephia, PA, pp 922–926

  13. Fu LC (1992) Robust adaptive decentralized control of robot manipulators. IEEE Trans Autom Control 37:106–110

    Article  Google Scholar 

  14. Wang JQ, Wend HD (1999) Robust decentralized control of robot manipulators. Int J Syst Sci 30:323–330

    Article  CAS  Google Scholar 

  15. Zhong YS (2002) Robust output tracking control of SISO plants with multiple operating points and with parametric and unconstructed uncertainties. Int J Control 75:219–241

    Article  Google Scholar 

  16. Zhong YS, Nagai Y, Takeuchi Y (1999) Robust output tracking of a class of nonlinear time-varying uncertain systems. In: Chen HF, Cheng DZ, Zhang JF (eds) Proceedings of the 14th IFAC World Congress, Beijing, vol G. IFAC/Elsevier, Oxford, pp 425–430

  17. Kelly, R (1997) PD control with desired gravity compensation of robotic manipulators: a review. Int J Robotics Res 16:660–672

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their constructive comments. This work was supported by the Tsinghua University 985 Project and the Projects 699100419 and 60374035 of the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Shi.

Appendices

Appendix 1: Proof of Lemma 1

Solving Eq. 17, one can find that ψ i =P i B ql can be expressed in the form as stated in the lemma, and under the condition that \( \frac{1} {{p_{i} }} > > f \geqslant 1 \), γ ji can be represented as:

$$ \gamma _{{ji}} = \frac{{a_{{2i}} f^{2}_{i} + a_{{1i}} f_{i} + a_{{0i}} }} {{f^{2}_{i} + (\alpha _{{1i}} + \beta _{{1i}} )f_{i} + (\alpha _{{1i}} \beta _{{1i}} + \beta _{{2i}} ) + (\alpha _{{1i}} \beta _{{2i}} )f^{{ - 1}}_{i} }},\quad j = 1,2,3 $$
$$ \gamma _{{ji}} = \frac{{b_{{3i}} f^{3}_{i} + b_{{2i}} f^{2}_{i} + b_{{1i}} f_{i} + b_{{0i}} }} {{f^{3}_{i} + (\alpha _{{1i}} + \beta _{{1i}} )f^{2}_{i} + (\alpha _{{1i}} \beta _{{1i}} + \beta _{{2i}} )f_{i} + \alpha _{{1i}} \beta _{{2i}} }},\quad j = 4,5 $$

where a ji (j=0,1,2) and b ki (k=0,1,2,3) are constants independent of f i . Since α 1i ,β 1i ,β 2i >0, obviously, the denominator of γ ji is larger than zero, so γ ji is continuous in f i and can be bounded by constants that are independent of f i . □

Appendix 2: Proof of Lemma 2

From (5), we have

$$ \begin{aligned} {\left\| \Delta \right\|} \leqslant {\left\| {M(\theta ) - M(\theta _{{\text{d}}} )} \right\|}{\left\| {\ddot{\theta }_{{\text{d}}} } \right\|} + {\left\| {M(\theta _{{\text{d}}} )\ddot{\theta }_{{\text{d}}} - M_{0} (\theta _{{\text{d}}} )\ddot{\theta }_{{\text{d}}} } \right\|} & \\ + {\left\| {C(\theta ,\dot{\theta }) - C(\theta _{{\text{d}}} ,\dot{\theta }_{{\text{d}}} )} \right\|}{\left\| {\dot{\theta }_{{\text{d}}} } \right\|} + {\left\| {C(\theta _{{\text{d}}} ,\dot{\theta }_{{\text{d}}} )\dot{\theta }_{{\text{d}}} - C_{0} (\theta _{{\text{d}}} ,\dot{\theta }_{{\text{d}}} )\dot{\theta }_{{\text{d}}} } \right\|} & \\ + {\left\| {g(\theta ) - g(\theta _{{\text{d}}} )} \right\|} + {\left\| {g(\theta _{{\text{d}}} ) - g_{0} (\theta _{{\text{d}}} )} \right\|} & \\ \end{aligned} $$

Suppose the desired trajectory is bounded and satisfies

$$ {\left\| {\theta _{d} } \right\|} \leqslant c_{1} ,{\left\| {\ifmmode\expandafter\dot\else\expandafter\.\fi{\theta }_{d} } \right\|} \leqslant c_{2} ,{\left\| {\ifmmode\expandafter\ddot\else\expandafter\"\fi{\theta }_{d} } \right\|} \leqslant c_{3} $$

where c 1, c 2, and c 3 are constants. In view of Properties 1–3 in Sect. 2, there exist positive constants k M, k M1, k c, k c1, k c2 satisfying

$$ {\left\| \Delta \right\|} \leqslant k_{{\text{M}}} c_{3} + k_{{{\text{M}}1}} c_{3} {\left\| e \right\|} + k_{{\text{C}}} c_{2} + k_{{{\text{C}}1}} c_{2} {\left\| {\dot{e}} \right\|} + k_{{{\text{C}}2}} c^{2}_{2} {\left\| e \right\|} + k_{{\text{g}}} + k_{{{\text{g}}1}} {\left\| e \right\|} $$

From Property 1 and Property 3(3), there exist positive constants k c3, k M2 such that

$$ {\left\| { - M^{{ - 1}} C\dot{e} + (M^{{ - 1}} - b_{0} )u_{0} } \right\|} \leqslant k_{{{\text{C}}3}} {\left\| {\dot{e}} \right\|}^{2} + k_{{{\text{M}}2}} {\left\| {u_{0} } \right\|} $$

So we have

$$ {\left\| {\tilde{q}} \right\|} \leqslant k_{{{\text{q}}1}} + k_{{{\text{q}}2}} {\left\| e \right\|} + k_{{{\text{q}}3}} {\left\| {\dot{e}} \right\|} + k_{{{\text{q}}4}} {\left\| {\dot{e}} \right\|}^{2} + k_{{{\text{q}}5}} {\left\| {u_{0} } \right\|}^{2} $$

where k q1, k q2, ..., k q5 are bounded positive constants. □

Appendix 3: Proof of Lemma 3

Because b 0λ min(M −1), which implies that \( \bar{\delta }(b^{{ - 1}}_{0} M^{{ - 1}} ) \leqslant I \), we have

$$ \bar{\delta }[b^{{ - 1}}_{0} M^{{ - 1}} - I] \leqslant 1 - b^{{ - 1}}_{0} \lambda _{{\min }} (M^{{ - 1}} ) $$

From Assumption (C), it follows that

$$ \ifmmode\expandafter\bar\else\expandafter\=\fi{\delta }[b^{{ - 1}}_{0} M^{{ - 1}} - I] \leqslant 1 - \varepsilon _{\Delta } $$

Therefore the conclusion holds. □

Appendix 4: Proof of Lemma 4

From (20), if \( f_{i} \geqslant {\mathop {\max }\limits_{j = 1}^3 }(\gamma _{{j\max }} )^{2} \), then

$$ {\text{ }}\frac{{k_{{{\text{q}}1}} }} {{b_{0} {\sqrt {f_{i} } }}}{\sum\limits_{i = 1}^3 {\gamma _{{i\max }} } } \leqslant \frac{{3k_{{{\text{q}}1}} }} {{b_{0} }} $$
(21)

Meanwhile, if

$$ \mu \geqslant \gamma _{{4\max }} + \gamma _{{5\max }} $$

which is satisfied under Assumption (A), then we have

$$ \frac{{k_{{{\text{q}}1}} }} {{b_{0} }}[1 + {(\gamma _{{4\max }} + \gamma _{{5\max }} )} \mathord{\left/ {\vphantom {{(\gamma _{{4\max }} + \gamma _{{5\max }} )} \mu }} \right. \kern-\nulldelimiterspace} \mu ] \leqslant \frac{{2k_{{{\text{q}}1}} }} {{b_{0} }} $$
(22)

Combining (21) and (22) results in

$$ \mu _{0} \leqslant \frac{{5k_{{{\text{q}}1}} }} {{b_{0} }} $$

Appendix 5: Proof of Theorem 1

Consider the following Lyapunov function candidate

$$ V = X^{T} PX = {\sum\limits_{i = 1}^n {V_{i} } },\quad V_{i} = X^{T}_{i} P_{i} X_{i} $$

where

$$ X = {\left[ {X^{T}_{1} ,X^{T}_{2} , \cdots ,X^{T}_{n} } \right]}^{T} ,\quad \;P = {\left[ {\begin{array}{*{20}c} {{P_{1} }} & {{}} & {{}} \\ {{}} & { \ddots } & {{}} \\ {{}} & {{}} & {{P_{n} }} \\ \end{array} } \right]} $$
(23)

The derivative of V, along the solution of the controlled system (16), is given by

$$ \begin{array}{*{20}l} {{\dot{V}} \hfill} & { = \hfill} & {{{\sum\limits_{i = 1}^n {\dot{V}_{i} } } = {\sum\limits_{i = 1}^n {( - X^{T}_{i} X_{i} + 2X^{T}_{i} P_{i} B_{{{\text{q}}i}} q_{i} )} }} \hfill} \\ {{} \hfill} & { \leqslant \hfill} & {{ - (e^{T} e + \dot{e}^{T} \dot{e} + u^{T}_{0} u_{0} + v^{T}_{0} v_{0} + \tilde{v}^{T} \tilde{v}) + 2\left\{ {{\sum\limits_{i = 1}^n {\frac{1} {{f_{i} b_{0} }}} }\gamma _{{1i}} e_{i} q_{i} } \right.} \hfill} \\ {{} \hfill} & {{} \hfill} & {\begin{aligned} & + {\sum\limits_{i = 1}^n {\frac{1} {{f_{i} b_{0} }}} }\gamma _{{2i}} \dot{e}_{i} q_{i} + {\sum\limits_{i = 1}^n {\frac{1} {{f_{i} b_{0} }}} }\gamma _{{3i}} u_{{0i}} q_{i} \\ & + {\sum\limits_{i = 1}^n {\frac{1} {{{\sqrt {f_{i} } }b_{0} }}(1 + \frac{{\gamma _{{4i}} }} {\mu })v_{{0i}} q_{i} + \left. {{\sum\limits_{i = 1}^n {\frac{{\gamma _{{5i}} }} {{{\sqrt {f_{i} } }b_{0} \mu }}\tilde{v}_{i} q_{i} } }} \right\}} } \\ \end{aligned} \hfill} \\ {{} \hfill} & { = \hfill} & {{ - (e^{T} e + \dot{e}^{T} \dot{e} + u^{T}_{0} u_{0} + v^{T}_{0} v_{0} + \tilde{v}^{T} \tilde{v})} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + 2\left[ {e^{T} {\text{diag}}{\left\{ {\frac{{\gamma _{{1i}} }} {{f_{i} b_{0} }}} \right\}} + \dot{e}^{T} {\text{diag}}{\left\{ {\frac{{\gamma _{{2i}} }} {{f_{i} b_{0} }}} \right\}} + u^{T}_{0} {\text{diag}}{\left\{ {\frac{{\gamma _{{3i}} }} {{f_{i} b_{0} }}} \right\}}} \right.} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + v^{T}_{0} {\text{diag}}{\left\{ {\frac{1} {{{\sqrt {f_{i} } }b_{0} }}(1 + \frac{{\gamma _{{4i}} }} {\mu })} \right\}} + \left. {\tilde{v}^{T} {\text{diag}}{\left\{ {\frac{{\gamma _{{5i}} }} {{{\sqrt {f_{i} } }b_{0} \mu }}} \right\}}} \right]q} \hfill} \\ \end{array} $$
(24)

From Lemma 2 and the definition of γ jmax in Lemma 4, (24) becomes

$$ \begin{array}{*{20}l} {{\dot{V}} \hfill} & { \leqslant \hfill} & {{ - ({\left\| e \right\|}^{2} + {\left\| {\dot{e}} \right\|}^{2} + {\left\| {u_{0} } \right\|}^{2} + {\left\| {v_{0} } \right\|}^{2} + {\left\| {\tilde{v}} \right\|}^{2} )} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + 2\left\{ {\left[ {\frac{1} {{f_{i} b_{0} }}} \right.} \right.(\gamma _{{1\max }} {\left\| e \right\|} + \gamma _{{2\max }} {\left\| {\dot{e}} \right\|} + \gamma _{{3\max }} {\left\| {u_{0} } \right\|})} \hfill} \\ {{} \hfill} & {{} \hfill} & {{\left. { + \frac{1} {{{\sqrt {f_{i} } }b_{0} }}(1 + \frac{{\gamma _{{4\max }} }} {\mu }){\left\| {v_{0} } \right\|} + \frac{{\gamma _{{5\max }} }} {{b_{0} \mu }}{\left\| {\tilde{v}} \right\|}} \right] \cdot {\left\| {\tilde{q}} \right\|}} \hfill} \\ {{} \hfill} & {{} \hfill} & {\begin{aligned} & + \left[ {\frac{1} {{{\sqrt {f_{i} } }}}} \right.(\gamma _{{1\max }} {\left\| e \right\|} + \gamma _{{2\max }} {\left\| {\dot{e}} \right\|} + \gamma _{{3\max }} {\left\| {u_{0} } \right\|}) \\ & + \left. {(1 + \frac{{\gamma _{{4\max }} }} {\mu }){\left\| {v_{0} } \right\|} + \left. {\frac{{\gamma _{{5\max }} }} {\mu }{\left\| {\tilde{v}} \right\|}} \right] \cdot {\left\| {b^{{ - 1}}_{0} (M^{{ - 1}} - b_{0} I)} \right\|} \cdot {\left\| {\tilde{v}} \right\|}} \right\} \\ \end{aligned} \hfill} \\ \end{array} $$
(25)

In the view of Lemma 1 and Lemma 3, (25) becomes

$$ \begin{array}{*{20}l} {{\ifmmode\expandafter\dot\else\expandafter\.\fi{V}} \hfill} & { \leqslant \hfill} & {{ - ({\left\| e \right\|}^{2} + {\left\| {\ifmmode\expandafter\dot\else\expandafter\.\fi{e}} \right\|}^{2} + {\left\| {u_{0} } \right\|}^{2} + {\left\| {v_{0} } \right\|}^{2} + {\left\| { \ifmmode\expandafter\tilde\else\expandafter\~\fi{v}} \right\|}^{2} )} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + 2\left\{ {[\frac{1} {{f_{i} b_{0} }}(\gamma _{{1\max }} {\left\| e \right\|} + \gamma _{{2\max }} {\left\| {\ifmmode\expandafter\dot\else\expandafter\.\fi{e}} \right\|} + \gamma _{{3\max }} {\left\| {u_{0} } \right\|})} \right.} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + \frac{1} {{{\sqrt {f_{i} } }b_{0} }}(1 + \frac{{\gamma _{{4\max }} }} {\mu }){\left\| {v_{0} } \right\|} + \frac{{\gamma _{{5\max }} }} {{b_{0} \mu }}{\left\| { \ifmmode\expandafter\tilde\else\expandafter\~\fi{v}} \right\|}]} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ \cdot [k_{{{\text{q}}1}} + k_{{{\text{q}}2}} {\left\| e \right\|} + k_{{{\text{q}}3}} {\left\| {\ifmmode\expandafter\dot\else\expandafter\.\fi{e}} \right\|} + k_{{{\text{q}}4}} {\left\| {\ifmmode\expandafter\dot\else\expandafter\.\fi{e}} \right\|}^{2} + k_{{{\text{q}}5}} {\left\| {u_{0} } \right\|}]} \hfill} \\ {{} \hfill} & {{} \hfill} & {\begin{aligned} & + \frac{1} {{{\sqrt {f_{i} } }}}(\gamma _{{1\max }} {\left\| e \right\|} + \gamma _{{2\max }} {\left\| {\ifmmode\expandafter\dot\else\expandafter\.\fi{e}} \right\|} + \gamma _{{3\max }} {\left\| {u_{0} } \right\|}){\left\| { \ifmmode\expandafter\tilde\else\expandafter\~\fi{v}} \right\|} \\ & + \left. {\ifmmode\expandafter\bar\else\expandafter\=\fi{\delta }(b^{{ - 1}}_{0} (M^{{ - 1}} - b_{0} I))[(1 + \frac{{\gamma _{{4\max }} }} {\mu }){\left\| {v_{0} } \right\|} + \frac{{\gamma _{{5\max }} }} {\mu }{\left\| { \ifmmode\expandafter\tilde\else\expandafter\~\fi{v}} \right\|}] \cdot {\left\| { \ifmmode\expandafter\tilde\else\expandafter\~\fi{v}} \right\|}} \right\} \\ \end{aligned} \hfill} \\ \end{array} $$
(26)

Define k sum=k q1+k q2+k q3+k q5 and k=[k q2, k q3, k q5]T and let k i denote the ith element of the vector k. Then (26) is further expressed as

$$ \dot{V} \leqslant - \mu _{1} {\left\| e \right\|}^{2} - \mu _{2} {\left\| {\dot{e}} \right\|}^{2} - \mu _{3} {\left\| {u_{0} } \right\|}^{2} - \mu _{4} {\left\| {v_{0} } \right\|}^{2} - \mu _{5} {\left\| {\tilde{v}} \right\|}^{2} + \frac{{\mu _{0} }} {{{\sqrt {f_{i} } }}} $$
(27)

where μ 0 is defined as (20),

$$ \mu _{i} = \left\{ {\begin{array}{*{20}l} {{1 - {\rho _{i} } \mathord{\left/ {\vphantom {{\rho _{i} } {{\sqrt {f_{i} } }}}} \right. \kern-\nulldelimiterspace} {{\sqrt {f_{i} } }}} \hfill} & {{(i = 1,3)} \hfill} \\ {{1 - ( \ifmmode\expandafter\tilde\else\expandafter\~\fi{\rho }_{i} + {\rho _{i} )} \mathord{\left/ {\vphantom {{\rho _{i} )} {{\sqrt {f_{i} } }}}} \right. \kern-\nulldelimiterspace} {{\sqrt {f_{i} } }}} \hfill} & {{(i = 2)} \hfill} \\ {{1 - \ifmmode\expandafter\bar\else\expandafter\=\fi{\delta }(b^{{ - 1}}_{0} (M^{{ - 1}} - b_{0} I))(1 + {\gamma _{{4\max }} } \mathord{\left/ {\vphantom {{\gamma _{{4\max }} } \mu }} \right. \kern-\nulldelimiterspace} \mu ) - {\rho _{i} } \mathord{\left/ {\vphantom {{\rho _{i} } {{\sqrt {f_{i} } }}}} \right. \kern-\nulldelimiterspace} {{\sqrt {f_{i} } }}} \hfill} & {{(i = 4)} \hfill} \\ {{1 - \ifmmode\expandafter\bar\else\expandafter\=\fi{\delta }(b^{{ - 1}}_{0} (M^{{ - 1}} - b_{0} I))[1 + {(\gamma _{{4\max }} + 2\gamma _{{5\max }} )} \mathord{\left/ {\vphantom {{(\gamma _{{4\max }} + 2\gamma _{{5\max }} )} \mu }} \right. \kern-\nulldelimiterspace} \mu ] - {\rho _{i} } \mathord{\left/ {\vphantom {{\rho _{i} } {{\sqrt {f_{i} } }}}} \right. \kern-\nulldelimiterspace} {{\sqrt {f_{i} } }}} \hfill} & {{(i = 5)} \hfill} \\ \end{array} } \right. $$
(28)
$$ \rho _{i} = \left\{ {\begin{array}{*{20}c} {\frac{1} {{{\sqrt {f_{i} } }b_{0} }}[\gamma _{{i\max }} k_{{{\text{sum}}}} + k_{i} {\sum\limits_{j = 1}^3 {\gamma _{{j\max }} } }] + \frac{{k_{i} }} {{b_{0} }}[1 + \frac{{\gamma _{{4\max }} + \gamma _{{5\max }} }} {\mu }] + \gamma _{{i\max }} }{(i = 1,2,3)} \\ {\frac{1} {{b_{0} }}[1 + \frac{{\gamma _{{4\max }} }} {\mu }]k_{{{\text{sum}}}} }{(i = 4)} \\ {{\sum\limits_{j = 1}^3 {\gamma _{{j\max }} } } + \frac{{\gamma _{{5\max }} k_{{{\text{sum}}}} }} {{b_{0} \mu }}}{(i = 5)} \\ \end{array} } \right. $$
(29)
$$ \begin{aligned} \tilde{\rho }_{2} = \frac{2} {{\lambda _{b} }}[\frac{{\gamma _{{1\max }} }} {{{\sqrt {f_{i} } }}}{\left\| e \right\|} + \frac{{\gamma _{{2\max }} }} {{{\sqrt {f_{i} } }}}{\left\| {\dot{e}} \right\|} + \frac{{\gamma _{{3\max }} }} {{{\sqrt {f_{i} } }}}{\left\| {u_{0} } \right\|} + (1 + \frac{{\gamma _{{4\max }} }} {\mu }){\left\| {v_{0} } \right\|} & \\ \quad \;\; + \frac{{\gamma _{{5\max }} }} {\mu }{\left\| {\tilde{v}} \right\|}]k_{{{\text{q}}4}} & \\ \end{aligned} $$
(30)

Define \( Y = {\left[ {e^{T} ,\dot{e}^{T} ,u^{T}_{0} ,v^{T}_{0} ,\tilde{v}^{T} } \right]}^{T} = {\left[ {Y^{T}_{1} ,Y^{T}_{2} ,Y^{T}_{3} ,Y^{T}_{4} ,Y^{T}_{5} } \right]}^{T} \), then under Assumption (A), we have

$$ \ifmmode\expandafter\tilde\else\expandafter\~\fi{\rho }_{2} \leqslant \phi _{1} {\sum\limits_{j = 1}^5 {{\left\| {Y_{i} } \right\|}} } \leqslant {\sqrt 5 }\phi _{1} {\left\| Y \right\|} $$
(31)

where \( \phi _{1} = 2k_{{{\text{q}}4}} b^{{ - 1}}_{0} {\mathop {\max }\limits_{} }\,\{ \gamma _{{1\max }} ,\gamma _{{2\max }} ,\gamma _{{3\max }} ,2\} \), is a bounded constant independent of f i .

In the following, the conditions are analyzed that ensure μ i >0, i=1,2,...,5.

Let π min be a positive constant so that π min<min{ε Δ,1}, and let i denote the values of p i when f i =1 and μ=γ 4max+2γ 5max. Then under Assumption (A) and the condition that μγ 4max+2γ 5max, we have p i i .

If the following equalities hold

$$ f_{i} \geqslant f_{{{\text{c}}2}} ,{\text{ }}\mu \geqslant \gamma _{{4\max }} + 2\gamma _{{5\max }} $$
(32)
$$ {\left\| Y \right\|} \leqslant {\text{ }}\frac{1} {{{\sqrt {\text{5}} }\phi _{1} }}[(1 - \pi _{{\min }} ){\sqrt {f_{i} } } - \ifmmode\expandafter\bar\else\expandafter\=\fi{\rho }_{2} ] $$
(33)

where

$$ f_{{{\text{c}}2}} = \max {\left\{ {{\mathop {\max }\limits_{i = 1,3} }{\left( {\frac{{\bar{\rho }_{i} }} {{1 - \pi _{{\min }} }}} \right)}^{2} ,\;{\mathop {\max }\limits_{i = 4,5} }{\left( {\frac{{\bar{\rho }_{i} }} {{\varepsilon _{\Delta } - \pi _{{\min }} }}} \right)}^{2} } \right\}} $$
(34)

then by (28) and from Lemma 3, we have

$$ \mu _{i} \geqslant \pi _{{\min }} ,{\text{ }}i = 1,2, \ldots ,5 $$
(35)

Note that (33) defines the attractive region.

If (35) holds and f i f c1 from Lemma 4, one sees that (27) can be rewritten as

$$ \dot{V} \leqslant - \pi _{{\min }} {\left\| Y \right\|}^{2} + \frac{{5k_{{{\text{q}}1}} }} {{{\sqrt {f_{i} } }b_{0} }} $$
(36)

Since

$$ {\left\| Y \right\|}^{2} = {\left\| X \right\|}^{2} \geqslant \frac{{X^{T} PX}} {{\lambda _{{\max }} (P)}} = \frac{V} {{\lambda _{{\max }} (P)}} $$

we obtain

$$ \dot{V} \leqslant - \zeta _{{\text{s}}} V + \varepsilon _{{\text{s}}} $$
(37)

and

$$ V(t) \leqslant V(t_{0} ){\text{e}}^{{ - \zeta _{{\text{s}}} (t - t_{0} )}} + \frac{{\varepsilon _{{\text{s}}} }} {{\zeta _{{\text{s}}} }}(1 - {\text{e}}^{{ - \zeta _{{\text{s}}} (t - t_{0} )}} ) $$
(38)

where

$$ \zeta _{{\text{s}}} = \frac{{\pi _{{\min }} }} {{\lambda _{{\max }} (P)}},\quad \varepsilon _{{\text{s}}} = \frac{{5k_{{{\text{q}}1}} }} {{{\sqrt {f_{i} } }b_{0} }} $$

Let

$$ \bar{V} = \max \{ V(t_{0} ),\;5k_{{{\text{q}}1}} b^{{ - 1}}_{0} \zeta ^{{ - 1}}_{{\text{s}}} \} $$

Then under Assumption (A) and from (37) it is known that \( V(t) \leqslant \ifmmode\expandafter\bar\else\expandafter\=\fi{V},\forall t \geqslant t_{0} \) and \( {\mathop {\lim }\limits_{t \to \infty } }V(t) \leqslant \varepsilon _{{\text{s}}} \zeta ^{{ - 1}}_{{\text{s}}} \). Because

$$ {\left\| Y \right\|}^{2} = {\left\| X \right\|}^{2} \leqslant \frac{{X^{T} PX}} {{\lambda _{{\min }} (P)}} = \frac{V} {{\lambda _{{\min }} (P)}} $$
(39)

Y(t) (and X(t) starting from the attractive region given by (33)) can remain inside that region, if

$$ \frac{1} {{{\sqrt {\text{5}} }\phi _{1} }}[(1 - \pi _{{\min }} ){\sqrt {f_{i} } } - \ifmmode\expandafter\bar\else\expandafter\=\fi{\rho }_{2} ] \geqslant {\sqrt {\ifmmode\expandafter\bar\else\expandafter\=\fi{V}\lambda ^{{ - 1}}_{{\min }} (P)} } $$
(40)

By Assumption (A), (40) holds, if

$$ f_{i} \geqslant f_{{{\text{c}}3}} ,\quad f_{{{\text{c}}3}} = \frac{1} {{(1 - \pi _{{\min }} )^{2} }}{\left( {\phi _{1} {\sqrt {5\ifmmode\expandafter\bar\else\expandafter\=\fi{V}\lambda ^{{ - 1}}_{{\min }} (P)} } + \ifmmode\expandafter\bar\else\expandafter\=\fi{\rho }_{2} } \right)}^{2} $$
(41)

In addition, from (37) and (39) we know that the state Y convergences to the set given by

$$ \Omega _{{\text{s}}} = {\left\{ {Y\left| {{\left\| Y \right\|}^{2} \leqslant {\varepsilon _{{\text{s}}} } \mathord{\left/ {\vphantom {{\varepsilon _{{\text{s}}} } {(\zeta _{{\text{s}}} \lambda _{{\min }} (P))}}} \right. \kern-\nulldelimiterspace} {(\zeta _{{\text{s}}} \lambda _{{\min }} (P))}} \right.} \right\}} $$

at a rate not slower than exp(−ξ s t/2).

By (39), if

$$ V(t) \leqslant \lambda _{{\min }} (P)\eta $$

then

$$ {\left\| X \right\|}^{2} \leqslant \eta $$

When both of the closed-loop system and the reference model are of zero initial conditions, V(t 0)=0. In this case, from (39), we have \( {\mathop {{\left\| X \right\|}^{2} }\limits_{t \geqslant t_{0} } } &lt; \eta \), if

$$ \frac{{\varepsilon _{{\text{s}}} }} {{\zeta _{{\text{s}}} }} \leqslant \eta \lambda _{{\min }} (P) $$
(42)

In the case of nonzero initial states, V(t 0)≠0. We can obtain \( {\mathop {{\left\| X \right\|}^{2} }\limits_{t \geqslant T} } &lt; \eta \), if

$$ V(t_{0} ){\text{e}}^{{ - \zeta _{{\text{s}}} (t - t_{0} )}} + \frac{{\varepsilon _{{\text{s}}} }} {{\zeta _{{\text{s}}} }} \leqslant \eta \lambda _{{\min }} (P) $$
(43)

If \( T \geqslant t_{0} + \frac{1} {{\zeta _{{\text{s}}} }}\ln (\frac{{2V(t_{0} )}} {{\eta \lambda _{{\min }} (P)}}) \), we have

$$ V(t_{0} ){\text{e}}^{{ - \zeta _{{\text{s}}} (T - t_{0} )}} \leqslant \frac{1} {2}\eta \lambda _{{\min }} (P) $$

Now to ensure (43) holds, it is required that

$$ \frac{{\varepsilon _{{\text{s}}} }} {{\zeta _{{\text{s}}} }} \leqslant \frac{1} {2}\eta \lambda _{{\min }} (P) $$
(44)

Incorporating (42) and (44) yields

$$ f_{i} \geqslant f_{{{\text{c}}4}} ,\quad f_{{{\text{c}}4}} = {\left( {\frac{{10k_{{{\text{q}}1}} \lambda _{{\max }} (P)}} {{\eta b_{0} \pi _{{\min }} \lambda _{{\min }} (P)}}} \right)}^{2} $$
(45)

From the previous analysis, we see that it is required

$$ f_{i} \geqslant {\mathop {\max }\limits_{j = 1}^4 }f_{{{\text{c}}j}} ,{\text{ }}\mu \geqslant \gamma _{{4\max }} + 2\gamma _{{5\max }} $$

where f ci , i=1,...,4 are bounded constants and γ 4max+2γ 5max are bounded by a constant, all independent of f i . When the parameters f i and μ are set such that the above conditions hold, then the robust transient property and robust tracking property can be achieved. So the conclusions of the theorem are proven. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z.Y., Zhong, Y.S. & Xu, W.L. Decentralized robust tracking control for uncertain robots. Electr Eng 87, 217–226 (2005). https://doi.org/10.1007/s00202-004-0232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-004-0232-8

Keywords

Navigation