Skip to main content
Log in

New characterizations of generalized Boolean functions

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

This paper focuses on providing the characteristics of generalized Boolean functions from a new perspective. We first generalize the classical Fourier transform and correlation spectrum into what we will call the \(\rho\)-Walsh–Hadamard transform (\(\rho\)-WHT) and the \(\rho\)-correlation spectrum, respectively. Then a direct relationship between the \(\rho\)-correlation spectrum and the \(\rho\)-WHT is presented. We investigate the characteristics and properties of generalized Boolean functions based on the \(\rho\)-WHT and the \(\rho\)-correlation spectrum, as well as the sufficient (or also necessary) conditions and subspace decomposition of \(\rho\)-bent functions. We also derive the \(\rho\)-autocorrelation for a class of generalized Boolean functions on \((n+2)\)-variables. Secondly, we present a characterization of a class of generalized Boolean functions with \(\rho\)-WHT in terms of the classical Boolean functions. Finally, we demonstrate that \(\rho\)-bent functions can be obtained from a class of composite construction if and only if \(\rho =1\). Some examples of non-affine \(\rho\)-bent functions are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The set of all Boolean functions in n variables is denoted by \(\mathcal {B}_{n}\), \(f\in \mathcal {B}_{n}\).

  2. The set of all generalized Boolean functions in n variables is denoted by \(\mathcal{G}\mathcal{B}_{n}^{q}\), \(\mathfrak {f}\in \mathcal{G}\mathcal{B}_{n}^{q}\).

References

  1. Anbar, N., Meidl, W.: Shifted plateaued functions and their differential properties. Cryptogr. Commun. 12(6), 1091–1105 (2020)

    Article  MathSciNet  Google Scholar 

  2. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge Univ. Press, Cambridge (2020). https://doi.org/10.1017/9781108606806

    Book  Google Scholar 

  3. Carlet C., Méaux P., Rotella Y.: Boolean functions with restricted input and their robustness, application to the FLIP cipher. IACR Trans. Symmet. Cryptol. 192–227 (2017)

  4. Chen, Z.X., Klapper, A.: On \(q\)-nearly bent Boolean functions. Discret. Appl. Math. 279, 210–217 (2020)

    Article  MathSciNet  Google Scholar 

  5. Dobbertin, H., Leander, G.: Bent functions embedded into the recursive framework of \(\mathbb{Z}\)-bent functions. Des. Codes Cryptogr. 49(1), 3–22 (2008)

    Article  MathSciNet  Google Scholar 

  6. Gangopadhyay, S., Gangopadhyay, A.K., Pollatos, S., Stănică, P.: Cryptographic Boolean functions with biased inputs. Cryptogr. Commun. 9(2), 301–314 (2017)

    Article  MathSciNet  Google Scholar 

  7. Gangopadhyay, S., Pasalic, E., Stănică, P.: A note on generalized bent criteria for Boolean functions. IEEE Trans. Inf. Theory 59(5), 3233–3236 (2013)

    Article  MathSciNet  Google Scholar 

  8. Gong, G., Golomb, S.W.: Transform domain analysis of DES. IEEE Trans. Inf. Theory 45(6), 2065–2073 (1999)

    Article  MathSciNet  Google Scholar 

  9. Hodz̆ić, S., Meidl, W., Pasalic E.: Full characterization of generalized bent functions as (semi)-bent spaces, their dual, and the Gray image. IEEE Trans. Inf. Theory 64(7), 5432–5440 (2018)

  10. Hodžić, S., Pasalic, E., Wei, Y.Z.: A general framework for secondary constructions of bent and plateaued functions. Des. Codes Cryptogr. 88(10), 2007–2035 (2020)

    Article  MathSciNet  Google Scholar 

  11. Hodz̆ić, S., Pasalic, E., Gangopadhyay, S.: Generic constructions of \(\mathbb{Z}\)-bent functions. Des. Codes Cryptogr. 88(3):601–623 (2020)

  12. Heidari, M., Pradhan, S.S., Venkataramanan, R.: Boolean functions with biased inputs: approximation and noise sensitivity. In: IEEE Inter. Symp. Inf. Theory (ISIT), pp. 1192–1196 (2019)

  13. Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Combin. Theory Ser. A 40(1), 90–107 (1985)

    Article  MathSciNet  Google Scholar 

  14. Klapper, A.: A new transform related to distance from a Boolean function. IEEE Trans. Inf. Theory 62(5), 2798–2812 (2016)

    Article  MathSciNet  Google Scholar 

  15. Li, Y.J., Kan, H.B., Mesnager, S., Peng, J., Tan, C.H., Zheng, L.J.: Generic constructions of (Boolean and vectorial) bent functions and their consequences. IEEE Trans. Inf. Theory 68(4), 2735–2751 (2022)

    Article  MathSciNet  Google Scholar 

  16. Mandal, B., Gangopadhyay, A.K.: A note on generalizetion of bent Boolean functions. Adv. Math. Commun. 15(2), 329–346 (2021)

    Article  MathSciNet  Google Scholar 

  17. Medina, L.A., Parker, M.G., Riera, C., Stănică, P.: Root-Hadamard transforms and complementary sequences. Cryptogr. Commun. 12(5), 1035–1049 (2020)

    Article  MathSciNet  Google Scholar 

  18. Mesnager, S.: Bent Functions: Fundamentals and Results. Springer, Berlin (2016)

    Book  Google Scholar 

  19. Mesnager, S., Tang, C.M., Qi, Y.F., Wang, L.B., Wu, B.F., Feng, K.Q.: Further results on generalized Bent functions and their complete characterization. IEEE Trans. Inf. Theory 64(7), 5441–5452 (2018)

    Article  MathSciNet  Google Scholar 

  20. Mesnager, S., Zhou, Z.C., Ding, C.S.: On the nonlinearity of Boolean functions with restricted input. Cryptogr. Commun. ll(1), 63–76 (2019)

    Article  MathSciNet  Google Scholar 

  21. Mesnager, S., Tang, C.M., Qi, Y.F.: Generalized plateaued functions and admissible (plateaued) functions. IEEE Trans. Inf. Theory 63(10), 6139–6148 (2017)

    Article  MathSciNet  Google Scholar 

  22. Martinsen, T., Meidl, W., Mesnager, S., Stănică, P.: Decomposing generalized bent and hyperbent functions. IEEE Trans. Inf. Theory 63(12), 7804–7812 (2017)

    Article  MathSciNet  Google Scholar 

  23. Maitra, S., Mandal, B., Martinsen, T., Roy, D., Stănică, P.: Analysis on Boolean function in a restricted (biased) domain. IEEE Trans. Inf. Theory 66(2), 1219–1231 (2020)

    Article  MathSciNet  Google Scholar 

  24. Meidl, W.: A survey on \(p\)-ary and generalized bent functions. Cryptogr. Commun. 14(4), 737–782 (2022)

    Article  MathSciNet  Google Scholar 

  25. Riera, C., Parker, M.G.: Generlized bent criteria for Boolean functions. IEEE Trans. Inf. Theory 52(9), 4142–4159 (2006)

    Article  Google Scholar 

  26. Singh, B.K.: On cross-correlation spectrum of generalized bent functions in generalized Maiorana–McFarland class. Inf. Sci. Lett. 2(3), 139–145 (2013)

    Article  Google Scholar 

  27. Sun, L., Shi, Z.X., Liu, J., Fu, F.W.: Results on the nonexistence of bent-negabent rotation symmetric Boolean functions. Cryptogr. Commun. 14(5), 999–1008 (2022)

    Article  MathSciNet  Google Scholar 

  28. Stănică, P., Gangopadhyay, S., Chaturvedi, A., Gangopadhyay, A.K., Maitra, S.: Investigations on bent and negabent functions via the nega-Hadamard transform. IEEE Trans. Inf. Theory 58(6), 4064–4072 (2012)

    Article  MathSciNet  Google Scholar 

  29. Stănică, P., Martinsen, T., Gangopadhyay, S., Singh, B.K.: Bent and generalized bent Boolean functions. Des. Codes Cryptogr. 69(1), 77–94 (2013)

    Article  MathSciNet  Google Scholar 

  30. Stănică, P.: On weak and strong \(2^{k}\)-bent Boolean functions. IEEE Trans. Inf. Theory 62(5), 2827–2835 (2016)

    Article  Google Scholar 

  31. Stănică, P., Gangopadhyay, S., Geary, A.: \(C\)-differential bent functions and perfect nonlinearity. Discret. Appl. Math. 307, 160–171 (2022)

    Article  MathSciNet  Google Scholar 

  32. Schmidt, K.U.: Quaternary constant-amplitude codes for multicode CDMA. IEEE Trans. Inf. Theory 55(4), 1824–1832 (2009)

    Article  MathSciNet  Google Scholar 

  33. Su, W., Pott, A., Tang, X.H.: Characterization of negabent functions and construction of bent-negabent functions with maximum algebraic degree. IEEE Trans. Inf. Theory 59(6), 3387–3395 (2013)

    Article  MathSciNet  Google Scholar 

  34. Tang, C.M., Xiang, C., Qi, Y.F., Feng, K.Q.: Complete characterization of generalized bent and \(2^k\)-bent Boolean functions. IEEE Trans. Inf. Theory 63(7), 4668–4674 (2017)

    Article  Google Scholar 

  35. Tang, D., Maitra, S.: Constructions of \(n\)-variable (\(n\equiv 2~\rm mod ~4\)) balanced Boolean funcntions with maximum absolute value in autocorrelation spectra \(<\frac{n}{2}\). IEEE Trans. Inf. Theory 64(1), 393–402 (2018)

    Article  Google Scholar 

  36. Wang, J.X., Fu, F.W.: On the duals of generalized bent functions. IEEE Trans. Inf. Theory 68(7), 4770–4781 (2022)

    Article  MathSciNet  Google Scholar 

  37. Wang J.X., Fu F.W.: Some generic constructions of generalized plateaued functions. ArXiv: 2103.10071v1. arxiv:2103.10071v2 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinhui Ke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (Nos. 62272420, 61902140); Provincial Natural Science Foundation of Fujian (No. 2023J01535).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Ke, P. & Chang, Z. New characterizations of generalized Boolean functions. AAECC (2024). https://doi.org/10.1007/s00200-024-00650-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00200-024-00650-w

Keywords

Navigation