Skip to main content
Log in

Bent and generalized bent Boolean functions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we investigate the properties of generalized bent functions defined on \({\mathbb{Z}_2^n}\) with values in \({\mathbb{Z}_q}\) , where q ≥ 2 is any positive integer. We characterize the class of generalized bent functions symmetric with respect to two variables, provide analogues of Maiorana–McFarland type bent functions and Dillon’s functions in the generalized set up. A class of bent functions called generalized spreads is introduced and we show that it contains all Dillon type generalized bent functions and Maiorana–McFarland type generalized bent functions. Thus, unification of two different types of generalized bent functions is achieved. The crosscorrelation spectrum of generalized Dillon type bent functions is also characterized. We further characterize generalized bent Boolean functions defined on \({\mathbb{Z}_2^n}\) with values in \({\mathbb{Z}_4}\) and \({\mathbb{Z}_8}\). Moreover, we propose several constructions of such generalized bent functions for both n even and n odd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bey C., Kyureghyan G.M.: On Boolean functions with the sum of every two of them being bent. Des. Codes Cryptogr. 49, 341–346 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlet C.: Generalized partial spreads. IEEE Trans. Inf. Theory 41, 1482–1487 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlet C., Guillot P.: A characterization of binary bent functions. J. Comb. Theory (A) 76(2), 328–335 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlet C., Guillot P.: An alternate characterization of the bentness of binary functions, with uniqueness. Des. Codes Cryptogr. 14(2), 133–140 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlet C.: Boolean functions for cryptography and error correcting codes. In: Crama Y., Hammer P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010).

  6. Carlet C.: Vectorial Boolean functions for cryptography. In: Crama Y., Hammer P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 398–469. Cambridge University Press, Cambridge (2010).

  7. Cusick T.W., Stănică P.: Cryptographic Boolean Functions and Applications. Elsevier, Amsterdam (2009)

    Google Scholar 

  8. Dillon J.F.: Elementary Hadamard difference sets. In: Proceedings of the Sixth S.E. Conference of Combinatorics, Graph Theory, and Computing, Congressus Numerantium No. XIV, Utilitas Math., Winnipeg, pp. 237–249 (1975).

  9. Hirschhorn M.D.: A simple proof of Jacobi’s four-square theorem. Proc. Am. Math. Soc. 101, 436–438 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Kumar P.V., Scholtz R.A., Welch L.R.: Generalized bent functions and their properties. J. Comb. Theory (A) 40, 90–107 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Laigle-Chapuy Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13, 58–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lam T.Y., Leung K.H.: On vanishing sums of roots of unity. J. Algebra 224(1), 91–109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rothaus O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300–305 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sarkar P., Maitra S.: Cross-correlation analysis of cryptographically useful Boolean functions and S-boxes. Theory Comput. Syst. 35, 39–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schmidt K.-U.: Quaternary constant-amplitude codes for multicode CDMA. In: IEEE International Symposium on Information Theory, ISIT’2007, Nice, France, June 24–29, 2007, pp. 2781–2785. Available at http://arxiv.org/abs/cs.IT/0611162.

  16. Solé P., Tokareva N.: Connections Between Quaternary and Binary Bent Functions. http://eprint.iacr.org/2009/544.pdf; see also, Prikl. Diskr. Mat. 1, 16–18 (2009).

  17. Stănică P., Gangopadhyay S., Chaturvedi A., Kar Gangopadhyay A., Maitra S.: Nega-Hadamard transform, bent and negabent functions. In: Carlet C., Pott A. (eds.) Sequences and Their Applications—SETA 2010, LNCS 6338, 359–372 (2010).

  18. Stănică P., Gangopadhyay S., Singh B.K.: Some Results Concerning Generalized Bent Functions. http://eprint.iacr.org/2011/290.pdf.

  19. Stănică P., Martinsen T.: Octal Bent Generalized Boolean Functions. http://eprint.iacr.org/2011/089.pdf.

  20. Zhao Y., Li H.: On bent functions with some symmetric properties. Discret. Appl. Math. 154, 2537–2543 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugata Gangopadhyay.

Additional information

Communicated by C. Carlet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stănică, P., Martinsen, T., Gangopadhyay, S. et al. Bent and generalized bent Boolean functions. Des. Codes Cryptogr. 69, 77–94 (2013). https://doi.org/10.1007/s10623-012-9622-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9622-5

Keywords

Mathematics Subject Classification (2000)

Navigation