Skip to main content
Log in

Two approaches to the extension problem for arbitrary weights over finite module alphabets

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

The extension problem underlies notions of code equivalence. Two approaches to the extension problem are described. One is a matrix approach that reduces the general problem for weights to one for symmetrized weight compositions. The other is a monoid algebra approach that reframes the extension problem in terms of modules over the monoid algebra determined by the multiplicative monoid of a finite ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barra, A.: Equivalence Theorems and the Local-Global Property. ProQuest LLC, Ann Arbor, MI (2012). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3584023. Thesis (Ph.D.)–University of Kentucky

  2. Barra, A., Gluesing-Luerssen, H.: MacWilliams extension theorems and the local-global property for codes over Frobenius rings. J. Pure Appl. Algebra 219(4), 703–728 (2015). https://doi.org/10.1016/j.jpaa.2014.04.026

    Article  MathSciNet  MATH  Google Scholar 

  3. Clark, A.E., Drake, D.A.: Finite chain rings. Abh. Math. Sem. Univ. Hamb. 39, 147–153 (1973)

    Article  MathSciNet  Google Scholar 

  4. Dyshko, S.: The extension theorem for Lee and Euclidean weight codes over integer residue rings. Des. Codes Cryptogr. 87(6), 1253–1269 (2019). https://doi.org/10.1007/s10623-018-0521-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Dyshko, S., Langevin, P., Wood, J.A.: Deux analogues au déterminant de Maillet. C. R. Math. Acad. Sci. Paris 354(7), 649–652 (2016)

    Article  MathSciNet  Google Scholar 

  6. ElGarem, N., Megahed, N., Wood, J.A.: The extension theorem with respect to symmetrized weight compositions. In: Pinto, R., Malonek, P.R., Vettori, P. (eds.) Coding Theory and Applications. CIM Series in Mathematical Sciences, vol. 3, pp. 177–183. Springer, Berlin (2015)

    Chapter  Google Scholar 

  7. Gnilke, O.W., Greferath, M., Honold, T., Wood, J.A., Zumbrägel, J.: The extension theorem for bi-invariant weights over Frobenius rings and Frobenius bimodules. In: Leroy, A., Lomp, C., López-Permouth, S., Oggier, F. (eds.) Rings, Modules and Codes, Contemporary Mathematics, vol. 727, pp. 117–129. Amer. Math. Soc., Providence, RI (2019)

    Chapter  Google Scholar 

  8. Greferath, M., Honold, T.: Monomial extensions of isometries of linear codes II: Invariant weight functions on \(Z_m\). In: Proceedings of the Tenth International Workshop in Algebraic and Combinatorial Coding Theory (ACCT-10), pp. 106–111. Zvenigorod, Russia (2006)

  9. Greferath, M., Honold, T., Mc Fadden, C., Wood, J.A., Zumbrägel, J.: MacWilliams’ extension theorem for bi-invariant weights over finite principal ideal rings. J. Combin. Theory Ser. A 125, 177–193 (2014). https://doi.org/10.1016/j.jcta.2014.03.005

    Article  MathSciNet  MATH  Google Scholar 

  10. Greferath, M., Mc Fadden, C., Zumbrägel, J.: Characteristics of invariant weights related to code equivalence over rings. Des. Codes Cryptogr. 66(1–3), 145–156 (2013). https://doi.org/10.1007/s10623-012-9671-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Greferath, M., Nechaev, A., Wisbauer, R.: Finite quasi-Frobenius modules and linear codes. J. Algebra Appl. 3(3), 247–272 (2004)

    Article  MathSciNet  Google Scholar 

  12. Greferath, M., Schmidt, S.E.: Finite-ring combinatorics and MacWilliams’s equivalence theorem. J. Combin. Theory Ser. A 92(1), 17–28 (2000)

    Article  MathSciNet  Google Scholar 

  13. Heise, W., Honold, T.: Homogeneous and egalitarian weights on finite rings. In: Proceedings of the Seventh International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-2000), pp. 183–188. Bansko, Bulgaria (2000)

  14. Honold, T.: Characterization of finite Frobenius rings. Arch. Math. (Basel) 76(6), 406–415 (2001)

    Article  MathSciNet  Google Scholar 

  15. Honold, T., Nechaev, A.A.: Weighted modules and representations of codes. Problems Inform. Transmiss. 35(3), 205–223 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Langevin, P., Wood, J.A.: The extension problem for Lee and Euclidean weights. J. Algebra Comb. Discrete Struct. Appl. 4(2), 207–217 (2017). https://doi.org/10.13069/jacodesmath.284970

    Article  MathSciNet  MATH  Google Scholar 

  17. Langevin, P., Wood, J.A.: The extension theorem for the Lee and Euclidean weights over \(\mathbb{{Z}}/p^k\mathbb{{Z}}\). J. Pure Appl. Algebra 223, 922–930 (2019)

    Article  MathSciNet  Google Scholar 

  18. MacWilliams, F.J.: Error-correcting codes for multiple-level transmission. Bell Syst. Tech. J. 40, 281–308 (1961)

    Article  MathSciNet  Google Scholar 

  19. MacWilliams, F.J.: Combinatorial problems of elementary abelian groups. Ph.D. thesis, Radcliffe College, Cambridge, MA (1962)

  20. Wood, J.A.: Extension theorems for linear codes over finite rings. In: Mora, T., Mattson, H. (eds.) Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Toulouse, 1997). Lecture Notes in Comput. Sci., vol. 1255, pp. 329–340. Springer, Berlin (1997)

    Chapter  Google Scholar 

  21. Wood, J.A.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121(3), 555–575 (1999)

    Article  MathSciNet  Google Scholar 

  22. Wood, J.A.: Weight functions and the extension theorem for linear codes over finite rings. In: Mullin, R.C., Mullen, G.L. (eds.) Finite Fields: Theory, Applications, and Algorithms (Waterloo, ON, 1997). Contemp. Math., vol. 225, pp. 231–243. Amer. Math. Soc., Providence, RI (1999)

    Chapter  Google Scholar 

  23. Wood, J.A.: Factoring the semigroup determinant of a finite chain ring. In: Buchmann, J., Holdt, T.H., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory, Cryptography and Related Areas, pp. 249–259. Springer, Berlin (2000)

    Chapter  Google Scholar 

  24. Wood, J.A.: Foundations of linear codes defined over finite modules: the extension theorem and the MacWilliams identities. In: Solé, P. (ed.) Codes over rings (Ankara, 2008). Ser. Coding Theory Cryptol., vol. 6, pp. 124–190. World Sci. Publ, Hackensack, NJ (2009)

    Chapter  Google Scholar 

  25. Wood, J.A.: Applications of finite Frobenius rings to the foundations of algebraic coding theory. In: Proceedings of the 44th Symposium on Ring Theory and Representation Theory, pp. 223–245. Symp. Ring Theory Represent. Theory Organ. Comm., Nagoya (2012)

Download references

Acknowledgements

I thank Noha Abdelghany for a number of conversations that helped me clarify various ideas, such as Theorem 4.5. I thank the anonymous referees for catching several typos and suggesting some clarification in the proof of Proposition 5.4. I thank my wife Elizabeth S. Moore for her steadfast encouragement and support, especially while I was trying to prove Theorem 4.3. This paper is dedicated to the memory of our mothers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay A. Wood.

Additional information

In memoriam: Florence E. Wood, 1922–2019. Mary Elizabeth Keyte Moore, 1932–2019.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, J.A. Two approaches to the extension problem for arbitrary weights over finite module alphabets. AAECC 32, 427–455 (2021). https://doi.org/10.1007/s00200-020-00465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00465-5

Keywords

Mathematics Subject Classification

Navigation