Skip to main content
Log in

Vertebral fracture severity assessment on anteroposterior radiographs with a new semi-quantitative technique

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We developed a new tool to assess the severity of osteoporotic vertebral fracture using radiographs of the spine. Our technique can be used in patient care by helping to stratify patients with osteoporotic vertebral fractures into appropriate treatment pathways. It can also be used for research purposes.

Purpose

The aim of our study was to propose a semi-quantitative (SQ) grading scheme for osteoporotic vertebral fracture (OVF) on anteroposterior (AP) radiographs.

Methods

On AP radiographs, the vertebrae are divided into right and left halves, which are graded (A) vertical rectangle, (B) square, (C) traverse rectangle, and (D) trapezoid; whole vertebrae are graded (E) transverse band or (F) bow-tie. Type A and B were compared with normal and Genant SQ grade 1 OVF, Type C and D with grade 2 OVF, and Type E and F with grade 3 OVF. Spine AP radiographs and lateral radiographs of 50 females were assessed by AP radiographs SQ grading. After training, an experienced board-certified radiologist and a radiology trainee assessed the 50 AP radiographs.

Results

The height-to-width ratio of the half vertebrae varied 1.32–1.48. On lateral radiographs, 84 vertebrae of the 50 patients had OVFs (38 grade 1, 24 grade 2, and 22 grade 3). On AP radiographs, the radiologist correctly assigned 84.2%, 91.7%, and 77.2% and the trainee correctly assigned 68.4%, 79.2%, and 81.8% of grade 1, 2, and 3 OVFs, respectively. Compared with lateral radiographs, the radiologist had a weighted Kappa of 0.944 including normal vertebrae and 0.883 not including normal vertebrae, while the corresponding Kappa values for the trainee were 0.891 and 0.830, respectively.

Conclusion

We propose a new semi-quantitative grading system for vertebral fracture severity assessment on AP spine radiographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request.

References

  1. Harvey N, Dennison E, Cooper C (2010) Osteoporosis: impact on health and economics. Nat Rev Rheumatol 6:99–105. https://doi.org/10.1038/nrrheum.2009.260

    Article  PubMed  Google Scholar 

  2. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. https://doi.org/10.1007/s00198-006-0172-4

  3. Li Y, Yan L, Cai S et al (2018) The prevalence and under-diagnosis of vertebral fractures on chest radiographs. BMC Musculoskelet Disord 19:235. https://doi.org/10.1186/s12891-018-2171-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim DH, Vaccaro AR (2006) Osteoporotic compression fractures of the spine; current options and considerations for treatment. Spine J 6:479–487. https://doi.org/10.1016/j.spinee.2006.04.013

    Article  PubMed  Google Scholar 

  5. Weaver J, Sajjan S, Lewiecki EM et al (2017) Prevalence and cost of subsequent fractures among U.S. patients with an incident fracture. J Manag Care Spec Pharm 23:461–471. https://doi.org/10.18553/jmcp.2017.23.4.461

    Article  PubMed  Google Scholar 

  6. Delmas PD, Genant HK, Crans GG et al (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33:522–532. https://doi.org/10.1016/s8756-3282(03)00241-2

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez-Rodriguez D, Bergmann P, Body JJ et al (2020) The Belgian Bone Club 2020 guidelines for the management of osteoporosis in postmenopausal women. Maturitas 139:69–89. https://doi.org/10.1016/j.maturitas.2020.05.006

    Article  CAS  PubMed  Google Scholar 

  8. Nuti R, Brandi ML, Checchia G et al (2019) Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med 14:85–102. https://doi.org/10.1007/s11739-018-1874-2

    Article  PubMed  Google Scholar 

  9. Wang YXJ, Che-Nordin N, Deng M et al (2019) Osteoporotic vertebral deformity with endplate/cortex fracture is associated with higher further vertebral fracture risk: the Ms. OS (Hong Kong) study results. Osteoporos Int 30:897–905. https://doi.org/10.1007/s00198-019-04856-4

    Article  CAS  PubMed  Google Scholar 

  10. Viswanathan M, Reddy S, Berkman N et al (2018) Screening to prevent osteoporotic fractures: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 319:2532–2551. https://doi.org/10.1001/jama.2018.6537

    Article  PubMed  Google Scholar 

  11. Crandall CJ, Newberry SJ, Diamant A et al (2014) Comparative effectiveness of pharmacologic treatments to prevent fractures: an updated systematic review. Ann Intern Med 161:711–723. https://doi.org/10.7326/M14-0317

    Article  PubMed  Google Scholar 

  12. Levis S, Theodore G (2012) Summary of AHRQ’s comparative effectiveness review of treatment to prevent fractures in men and women with low bone density or osteoporosis: update of the 2007 report. J Manag Care Pharm 18:S1–S15; discussion S13. https://doi.org/10.18553/jmcp.2012.18.s4-b.1

    Article  PubMed  Google Scholar 

  13. Howe TE, Shea B, Dawson LJ et al (2011) Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 6:CD000333. https://doi.org/10.1002/14651858.CD000333.pub2

    Article  Google Scholar 

  14. Conley RB, Adib G, Adler RA et al (2020) Secondary fracture prevention: consensus clinical recommendations from a multistakeholder coalition. J Bone Miner Res 35:36–52. https://doi.org/10.1002/jbmr.3877

    Article  PubMed  Google Scholar 

  15. Kwok TCY, Law SW, Leung EMF et al (2020) Hip fractures are preventable: a proposal for osteoporosis screening and fall prevention in older people. Hong Kong Med J 26:227–235. https://doi.org/10.12809/hkmj198337

    Article  CAS  PubMed  Google Scholar 

  16. Force USPST, Curry SJ, Krist AH et al (2018) Screening for osteoporosis to prevent fractures: US Preventive Services Task Force recommendation statement. JAMA 319:2521–2531. https://doi.org/10.1001/jama.2018.7498

    Article  Google Scholar 

  17. Camacho PM, Petak SM, Binkley N et al (2020) American Association of Clinical Endocrinologists/American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2020 update. Endocr Pract 26:1–46. https://doi.org/10.4158/GL-2020-0524SUPPL

    Article  PubMed  Google Scholar 

  18. Wang YXJ, Du MM, Che-Nordin N et al (2020) Recognizing osteoporotic vertebral deformity on frontal view radiograph: a cohort analysis and a pictorial review. Arch Osteoporos 15:41. https://doi.org/10.1007/s11657-020-00716-5

    Article  PubMed  Google Scholar 

  19. Wang YXJ, Du EZ, Gong J, Cheng X (2021) Interpretation of osteoporotic vertebral deformity on frontal view radiographs of the chest and abdomen: a pictorial review. Quant Imaging Med Surg 11:423–442. https://doi.org/10.21037/qims-2020-28

    Article  PubMed  PubMed Central  Google Scholar 

  20. Du EZ, Liu WH, Wang YXJ (2021) Improving osteoporotic vertebral deformity detection on chest frontal view radiograph by adjusted X-ray beam positioning. J Orthop Translat 28:169–178. https://doi.org/10.1016/j.jot.2021.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148. https://doi.org/10.1002/jbmr.5650080915

    Article  CAS  PubMed  Google Scholar 

  22. Wang YXJ, Santiago FR, Deng M, Nogueira-Barbosa MH (2017) Identifying osteoporotic vertebral endplate and cortex fractures. Quant Imaging Med Surg 7:555–591. https://doi.org/10.21037/qims.2017.10.05

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang YXJ, Diacinti D, Yu W et al (2020) Semi-quantitative grading and extended semi-quantitative grading for osteoporotic vertebral deformity: a radiographic image database for education and calibration. Ann Transl Med 8:398. https://doi.org/10.21037/atm.2020.02.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fleiss JL (1981) Statistical methods for rates and proportions, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  25. Jensen GF, McNair P, Boesen J, Hegedus V (1984) Validity in diagnosing osteoporosis. Observer variation in interpreting spinal radiographs. Eur J Radiol 4:1–3

    CAS  PubMed  Google Scholar 

  26. Jiang G, Eastell R, Barrington NA, Ferrar L (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15:887–896. https://doi.org/10.1007/s00198-004-1626-1

    Article  CAS  PubMed  Google Scholar 

  27. Yu W, Lin Q, Zhou X et al (2014) Reconsideration of the relevance of mild wedge or short vertebral height deformities across a broad age distribution. Osteoporos Int 25:2609–2615. https://doi.org/10.1007/s00198-014-2801-7

    Article  CAS  PubMed  Google Scholar 

  28. Wu CY, Li J, Jergas M, Genant HK (1995) Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporos Int 5:354–370. https://doi.org/10.1007/BF01622258

    Article  CAS  PubMed  Google Scholar 

  29. Ferrar L, Jiang G, Cawthon PM et al (2007) Identification of vertebral fracture and non-osteoporotic short vertebral height in men: the MrOS study. J Bone Miner Res 22:1434–1441. https://doi.org/10.1359/jbmr.070608

    Article  PubMed  Google Scholar 

  30. Kleerekoper M, Neson DA, Peterson EL, Tilley BC (1992) Outcome variables in osteoporosis trials. Bone 13:S29–S34. https://doi.org/10.1016/s8756-3282(09)80007-0

    Article  PubMed  Google Scholar 

  31. Guglielmi G, Diacinti D, van Kuijk C et al (2008) Vertebral morphometry: current methods and recent advances. Eur Radiol 18:1484–1496. https://doi.org/10.1007/s00330-008-0899-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yu.

Ethics declarations

Conflicts of interest

Ali Guermazi is the President of Boston Imaging Core Lab (BICL), LLC, and a consultant to Merck Serono, AstraZeneca, Pfizer, Galapagos, Roche, and Tissue Gene. Daichi Hayashi received publication royalties from Wolters Kluwer. Wei Yu, Wen-Min Guan, Qiang Lin, Mei-Mei Du, Wei-Bo Xia, and Yi-Xiang J Wang declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Guan, WM., Hayashi, D. et al. Vertebral fracture severity assessment on anteroposterior radiographs with a new semi-quantitative technique. Osteoporos Int 35, 831–839 (2024). https://doi.org/10.1007/s00198-024-07024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-024-07024-5

Keywords

Navigation