Skip to main content
Log in

Pubertal increment in insulin resistance is negatively related to lumbar bone mineral density in 18-year-old males

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Transient insulin resistance seen during puberty is expected to favour body growth, but our results show that increment in insulin resistance even in physiological ranges during puberty might compromise lumbar spine bone mineral density accrual independently of body composition parameters, and therefore adult bone quality might be challenged.

Introduction

Insulin resistance (IR) might have a compromising effect on growing bone, and therefore adult bone quality might be challenged. The aim of the present study was to identify whether increases in IR during puberty contribute to bone mineral characteristics in males independently of body composition parameters.

Methods

This is a retrospective cohort-based longitudinal observational study. Data from 85 subjects were included. Boys were studied annually during their pubertal years (12 years at baseline) and at follow-up at the age of 18 years. Anthropometry, bone age, fasting blood samples, body composition, total body, and lumbar spine bone mineral characteristics were measured. Insulin resistance was determined by homeostatic model assessment of IR (HOMA-IR). Multiple regression analysis was performed to determine the effect of changes in HOMA-IR during pubertal years as a longitudinal predictor to fixed bone mineral outcome variables at the age of 18 years. All models were adjusted to potential clinically justified confounding variables.

Results

After adjustment to baseline bone indices and body composition-related predictors, the pubertal increment in the HOMA-IR was a negative independent predictor of lumbar spine bone mineral areal density (β =  − 0.202, p = 0.005) and lumbar spine bone mineral apparent density (β =  − 0.235, p = 0.005) in 18-year-old males.

Conclusions

Pubertal increment in IR has a potential diminishing effect on lumbar spine bone mineral density accrual independently of body composition parameters. Further studies are needed to clarify whether monitoring HOMA-IR during puberty may identify subjects at increased risk of low peak bone mass and possible osteoporosis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shashaj B, Luciano R, Contoli B, Morino GS, Spreghini MR, Rustico C, Sforza RW, Dallapiccola B, Manco M (2016) Reference ranges of HOMA-IR in normal-weight and obese young Caucasians. Acta Diabetol 53:251–260. https://doi.org/10.1007/s00592-015-0782-4

    Article  CAS  Google Scholar 

  2. Jeffery AN, Metcalf BS, Hosking J, Streeter AJ, Voss LD, Wilkin TJ (2012) Age before stage: insulin resistance rises before the onset of puberty: a 9-year longitudinal study (EarlyBird 26). Diabetes Care 35:536–541. https://doi.org/10.2337/dc11-1281

    Article  CAS  Google Scholar 

  3. Hannon TS, Janosky J, Arslanian SA (2006) Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr Res 60:759–763. https://doi.org/10.1203/01.pdr.0000246097.73031.27

    Article  CAS  Google Scholar 

  4. Kim SH, Park MJ (2017) Effects of growth hormone on glucose metabolism and insulin resistance in human. Ann Pediatr Endocrinol Metab 22:145–152. https://doi.org/10.6065/apem.2017.22.3.145

    Article  Google Scholar 

  5. Moran A, Jacobs DR Jr, Steinberger J, Cohen P, Hong CP, Prineas R, Sinaiko AR (2002) Association between the insulin resistance of puberty and the insulin-like growth factor-I/growth hormone axis. J Clin Endocrinol Metab 87:4817–4820. https://doi.org/10.1210/jc.2002-020517

    Article  CAS  Google Scholar 

  6. Mosca LN, da Silva VN, Goldberg TB (2013) Does excess weight interfere with bone mass accumulation during adolescence? Nutrients 5:2047–2061. https://doi.org/10.3390/nu5062047

    Article  Google Scholar 

  7. Nóbrega da Silva V, Goldberg TBL, Silva CC, Kurokawa CS, Fiorelli LNM, Rizzo ADCB, Corrente JE (2021) Impact of metabolic syndrome and its components on bone remodeling in adolescents. PLoS ONE 16(7):e0253892. https://doi.org/10.1371/journal.pone.0253892

    Article  CAS  Google Scholar 

  8. Choo MS, Choi SR, Han JH, Lee SH, Shim YS (2017) Association of insulin resistance with near peak bone mass in the femur and lumbar spine of Korean adults aged 25–35: the Korean National Health and Nutrition Examination Survey 2008–2010. PLoS ONE 12(7):e0177311. https://doi.org/10.1371/journal.pone.0177311

    Article  CAS  Google Scholar 

  9. Gracia-Marco L, Ortega FB, Jiménez-Pavón D, Rodríguez G, Castillo MJ, Vicente-Rodríguez G, Moreno LA (2012) Adiposity and bone health in Spanish adolescents. The HELENA study Osteoporos Int 23:937–947. https://doi.org/10.1007/s00198-011-1649-3

    Article  CAS  Google Scholar 

  10. Ivuskans A, Lätt E, Mäestu J, Saar M, Purge P, Maasalu K, Jürimäe T, Jürimäe J (2013) Bone mineral density in 11–13-year-old boys: relative importance of the weight status and body composition factors. Rheumatol Int 33:1681–1687. https://doi.org/10.1007/s00296-012-2612-0

    Article  Google Scholar 

  11. Sioen I, Lust E, De Henauw S, Moreno LA, Jiménez-Pavón D (2016) Associations between body composition and bone health in children and adolescents: a systematic review. Calcif Tissue Int 99:557–577. https://doi.org/10.1007/s00223-016-0183-x

    Article  CAS  Google Scholar 

  12. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Brüning JC, Clemens TL (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319. https://doi.org/10.1016/j.cell.2010.06.002

    Article  CAS  Google Scholar 

  13. Thomas DM, Hards DK, Rogers SD, Ng KW, Best JD (1996) Insulin receptor expression in bone. J Bone Miner Res 11:1312–1320. https://doi.org/10.1002/jbmr.5650110916

    Article  CAS  Google Scholar 

  14. Klein GL (2014) Insulin and bone: recent developments. World J Diabetes 5:14–16. https://doi.org/10.4239/wjd.v5.i1.14

    Article  Google Scholar 

  15. Ivaska KK, Heliövaara MK, Ebeling P, Bucci M, Huovinen V, Väänänen HK, Nuutila P, Koistinen HA (2015) The effects of acute hyperinsulinemia on bone metabolism. Endocr Connect 4:155–162. https://doi.org/10.1530/EC-15-0022

    Article  CAS  Google Scholar 

  16. Karimi F, Ranjbar Omrani G, Dabbaghmanesh MH (2021) Insulin resistance and bone health in adolescents. Arch Osteoporos 16:66. https://doi.org/10.1007/s11657-021-00917-6

    Article  Google Scholar 

  17. Rønne MS, Heidemann M, Lylloff L, Schou AJ, Tarp J, Bugge A, Laursen JO, Jørgensen NR, Husby S, Wedderkopp N, Mølgaard C (2019) Bone mass development is sensitive to insulin resistance in adolescent boys. Bone 122:1–7. https://doi.org/10.1016/j.bone.2019.02.005

    Article  CAS  Google Scholar 

  18. Pollock NK, Bernard PJ, Gutin B, Davis CL, Zhu H, Dong Y (2011) Adolescent obesity, bone mass, and cardiometabolic risk factors. J Pediatr 158(5):727–734. https://doi.org/10.1016/j.jpeds.2010.11.052

    Article  Google Scholar 

  19. Kindler JM, Lobene AJ, Vogel KA, Martin BR, McCabe LD, Peacock M, Warden SJ, McCabe GP, Weaver CM (2019) Adiposity, insulin resistance, and bone mass in children and adolescents. J Clin Endocrinol Metab 104:892–899. https://doi.org/10.1210/jc.2018-00353

    Article  Google Scholar 

  20. Sayers A, Lawlor DA, Sattar N, Tobias JH (2012) The association between insulin levels and cortical bone: findings from a cross-sectional analysis of pQCT parameters in adolescents. J Bone Miner Res 27:610–618. https://doi.org/10.1002/jbmr.1467

    Article  CAS  Google Scholar 

  21. do Prado WL, de Piano A, Lazaretti-Castro M, de Mello MT, Stella SG, Tufik S, do Nascimento CM, Oyama LM, Lofrano MC, Tock L, Caranti DA, Dâmaso AR (2009) Relationship between bone mineral density, leptin and insulin concentration in Brazilian obese adolescents. J Bone Miner Metab 27:613–619. https://doi.org/10.1007/s00774-009-0082-6

    Article  CAS  Google Scholar 

  22. Dennison EM, Syddall HE, Aihie Sayer A, Craighead S, Phillips DI, Cooper C (2004) Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire Cohort Study: evidence for an indirect effect of insulin resistance? Diabetologia 47:1963–1968. https://doi.org/10.1007/s00125-004-1560-y

    Article  CAS  Google Scholar 

  23. Shin D, Kim S, Kim KH, Lee K, Park SM (2014) Association between insulin resistance and bone mass in men. J Clin Endocrinol Metab 99:988–995. https://doi.org/10.1210/jc.2013-3338

    Article  CAS  Google Scholar 

  24. Srikanthan P, Crandall CJ, Miller-Martinez D, Seeman TE, Greendale GA, Binkley N, Karlamangla AS (2014) Insulin resistance and bone strength: findings from the study of midlife in the United States. J Bone Miner Res 29:796–803. https://doi.org/10.1002/jbmr.2083

    Article  CAS  Google Scholar 

  25. Lawlor DA, Sattar N, Sayers A, Tobias JH (2012) The association of fasting insulin, glucose, and lipids with bone mass in adolescents: findings from a cross-sectional study. J Clin Endocrinol Metab 97:2068–2076. https://doi.org/10.1210/jc.2011-2721

    Article  CAS  Google Scholar 

  26. Lee K (2013) Sex-specific relationships between insulin resistance and bone mineral content in Korean adolescents. J Bone Miner Metab 31:177–182. https://doi.org/10.1007/s00774-012-0396-7

    Article  CAS  Google Scholar 

  27. Park SW, Nam GE, Jung DW, Yoon SJ, Han K, Park YG, Choi JS, Lee JE, Sang JE, Yoon YJ, Kim DH (2016) Association of lipid parameters and insulin resistance with bone health in South Korean adolescents. Osteoporos Int 27:635–642. https://doi.org/10.1007/s00198-015-3306-8

    Article  CAS  Google Scholar 

  28. Tamme R, Jürimäe J, Mäestu E, Remmel L, Purge P, Mengel E, Tillmann V (2019) Physical activity in puberty is associated with total body and femoral neck bone mineral characteristics in males at 18 years of age. Medicina (Kaunas) 55:203. https://doi.org/10.3390/medicina55050203

    Article  Google Scholar 

  29. Tanner JM, Whitehouse RH, Marubini E, Resele LF (1976) The adolescent growth spurt of boys and girls of the Harpenden growth study. Ann Hum Biol 3:109–126. https://doi.org/10.1080/03014467600001231

    Article  CAS  Google Scholar 

  30. Matsudo SMM, Matsudo VKR (1994) Self-assessment and physician assessment of sexual maturation in Brazilian boys and girls: concordance and reproducibility. Am J Hum Biol 6:451–455. https://doi.org/10.1002/ajhb.1310060406

    Article  Google Scholar 

  31. Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of hand and wrist, 2nd edn. Stanford University Press, Stanford

    Google Scholar 

  32. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339. https://doi.org/10.1210/jcem-73-6-1332

    Article  CAS  Google Scholar 

  33. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27:1487–1495. https://doi.org/10.2337/diacare.27.6.1487

    Article  Google Scholar 

  34. Tamme R, Jürimäe J, Mäestu E, Remmel L, Purge P, Mengel E, Tillmann V (2019) Association of serum testosterone at 12 years with a subsequent increase in bone mineral apparent density at 18 years: a longitudinal study of boys in puberty. Horm Res Paediatr 91:400–405. https://doi.org/10.1159/000502606

    Article  CAS  Google Scholar 

  35. Welten M, de Kroon MLA, Renders CM, Steyerberg EW, Raat H, Twisk JWR, Heymans MW (2018) Repeatedly measured predictors: a comparison of methods for prediction modeling. Diagn Progn Res 2:5. https://doi.org/10.1186/s41512-018-0024-7

    Article  Google Scholar 

  36. Kanis JA, Cooper C, Rizzoli R, Reginster JY; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF) (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44. https://doi.org/10.1007/s00198-018-4704-5

    Article  Google Scholar 

  37. Kraenzlin ME, Meier C (2011) Parathyroid hormone analogues in the treatment of osteoporosis. Nat Rev Endocrinol 7:647–656. https://doi.org/10.1038/nrendo.2011.108

    Article  CAS  Google Scholar 

  38. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(3):S131–S139. https://doi.org/10.2215/CJN.04151206

    Article  CAS  Google Scholar 

  39. Mora S, Goodman WG, Loro ML, Roe TF, Sayre J, Gilsanz V (1994) Age-related changes in cortical and cancellous vertebral bone density in girls: assessment with quantitative CT. AJR Am J Roentgenol 162:405–409. https://doi.org/10.2214/ajr.162.2.8310936

    Article  CAS  Google Scholar 

  40. Mengel E, Tillmann V, Remmel L, Kool P, Purge P, Lätt E, Jürimäe J (2017) Extensive BMI gain in puberty is associated with lower increments in bone mineral density in Estonian boys with overweight and obesity: a 3-year longitudinal study. Calcif Tissue Int 101:174–181. https://doi.org/10.1007/s00223-017-0273-4

    Article  CAS  Google Scholar 

  41. Mihalopoulos NL, Holubkov R, Young P, Dai S, Labarthe DR (2010) Expected changes in clinical measures of adiposity during puberty. J Adolesc Health 47:360–366. https://doi.org/10.1016/j.jadohealth.2010.03.019

    Article  Google Scholar 

  42. Torres-Costoso A, Pozuelo-Carrascosa DP, Álvarez-Bueno C, Ferri-Morales A, Miota Ibarra J, Notario-Pacheco B, Martínez-Vizcaíno V (2017) Insulin and bone health in young adults: the mediator role of lean mass. PLoS ONE 12:e0173874. https://doi.org/10.1371/journal.pone.0173874

    Article  CAS  Google Scholar 

  43. Paquin J, Lagacé JC, Brochu M, Dionne IJ (2021) Exercising for insulin sensitivity - is there a mechanistic relationship with quantitative changes in skeletal muscle mass? Front Physiol 12:656909. https://doi.org/10.3389/fphys.2021.656909

    Article  Google Scholar 

  44. Raygor V, Abbasi F, Lazzeroni LC, Kim S, Ingelsson E, Reaven GM, Knowles JW (2019) Impact of race/ethnicity on insulin resistance and hypertriglyceridaemia. Diab Vasc Dis Res 16:153–159. https://doi.org/10.1177/1479164118813890

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Estonian Research Council grant (PRG 1120 and PRG 1428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Mengel.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengel, E., Tamme, R., Remmel, L. et al. Pubertal increment in insulin resistance is negatively related to lumbar bone mineral density in 18-year-old males. Osteoporos Int 34, 161–170 (2023). https://doi.org/10.1007/s00198-022-06591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06591-9

Keywords

Navigation