Skip to main content

Advertisement

Log in

Rapid trabecular bone growth in puberty associated with stiffer arteries in adulthood – longitudinal study on healthy young males

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Longitudinal bone content data from puberty to adulthood was assessed in 102 healthy males and associations with arterial health in adulthood was analysed. Bone growth in puberty was related to arterial stiffening and final bone mineral content to decreased arterial stiffness. Relationships with arterial stiffness were dependent on the studied bone regions.

Introduction

Our aim was to assess the relationships between arterial parameters in adulthood and bone parameters in several locations longitudinally from puberty to 18-years and cross-sectionally at 18-years.

Methods

102 healthy male data from a 7-year follow—up study was used to analyse total body (TB), femoral neck (FN) and lumbar spine (LS) mineral content and density by DXA, carotid intima-media thickness (cIMT) by ultrasound, carotid-femoral pulse wave velocity (cfPWV) and heart rate adjusted augmentation index (AIxHR75) by applanation tonometry.

Results

Linear regression analysis revealed negative associations between LS bone mineral density (BMD) and cfPWV [ß=-1.861, CI -3.589, -0.132, p=0.035] which remained significant [ß=-2.679, CI -4.837, -0.522, p=0.016] after adjustment to smoking, lean mass, weight category, pubertal stage, physical fitness, and activity. For AIxHR75 similar results were present [ß=-0.286, CI -0.553, -0.020, p=0.035], but were dependent on confounders. Analysis on pubertal bone growth speed showed independent positive associations to AIxHR75 between Δ FN bone mineral apparent density (BMAD) [ß=672.50, CI 348.07, 996.93, p<0.001] and Δ LS BMAD [ß=700.40, CI 57.384, 1343.423, p=0.033]. Further analysis combining pubertal bone growth and adulthood BMC revealed that the relationships of AIxHR75 with LS BMC and ΔFN BMAD were independent of each other.

Conclusion

Trabecular bone regions like lumbar spine and femoral neck, showed stronger relationships with arterial stiffness. Rapid bone growth in puberty is related to arterial stiffening, while final bone mineral content relates to decreased arterial stiffness. These results could indicate that bone metabolism is independently associated with arterial stiffness rather than bone and arteries just having common traits of growth and maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32:2045–2051. https://doi.org/10.1161/ATVBAHA.108.179705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fishbein GA, Fishbein MC (2009) Arteriosclerosis: rethinking the current classification. Arch Pathol Lab Med 133:1309–1316. https://doi.org/10.5858/133.8.1309

    Article  PubMed  Google Scholar 

  3. Mikael L d R, de Paiva AMG, Gomes MM et al (2017) Vascular aging and arterial stiffness. Arq Bras Cardiol 109:253–258. https://doi.org/10.5935/abc.20170091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Townsend RR, Wilkinson IB, Schiffrin EL et al (2015) Recommendations for improving and standardizing vascular research on arterial stiffness. Hypertension 66:698–722. https://doi.org/10.1161/HYP.0000000000000033

    Article  CAS  PubMed  Google Scholar 

  5. Boukhris R, Becker KL (1972) Calcification of the aorta and osteoporosis: a roentgenographic study. JAMA 219:1307–1311. https://doi.org/10.1001/jama.1972.03190360019005

    Article  CAS  PubMed  Google Scholar 

  6. Frysz M, Deere K, Lawlor DA et al (2016) Bone mineral density is positively related to carotid intima-media thickness: findings from a population-based study in adolescents and premenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res 31:2139–2148. https://doi.org/10.1002/jbmr.2903

    Article  CAS  Google Scholar 

  7. Zhang P, Yang L, Xu Q et al (2022) Associations between bone mineral density and coronary artery calcification: a systematic review and meta-analysis. Ther Adv Chronic Dis 13:20406223221087000. https://doi.org/10.1177/20406223221086998

    Article  Google Scholar 

  8. Avramovski P, Avramovska M, Sikole A (2016) Bone strength and arterial stiffness impact on cardiovascular mortality in a general population. J Osteoporos 2016:7030272. https://doi.org/10.1155/2016/7030272

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jørgensen L, Joakimsen O, Rosvold Berntsen GK et al (2004) Low bone mineral density is related to echogenic carotid artery plaques: a population-based study. Am J Epidemiol 160:549–556. https://doi.org/10.1093/aje/kwh252

    Article  PubMed  Google Scholar 

  10. Marcovitz PA, Tran HH, Franklin BA et al (2005) Usefulness of bone mineral density to predict significant coronary artery disease. Am J Cardiol 96:1059–1063. https://doi.org/10.1016/j.amjcard.2005.06.034

    Article  PubMed  Google Scholar 

  11. Shaffer JR, Kammerer CM, Rainwater DL et al (2007) Decreased bone mineral density is correlated with increased subclinical atherosclerosis in older, but not younger, Mexican American women and men: the San Antonio Family Osteoporosis Study. Calcif Tissue Int 81:430–441. https://doi.org/10.1007/s00223-007-9079-0

    Article  CAS  PubMed  Google Scholar 

  12. Hanks LJ, Ashraf AP, Gower BA et al (2013) Subclinical indication of linkage between markers of skeletal and cardiovascular properties. Bone Res 1:291. https://doi.org/10.4248/BR201303007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mishra BH, Mishra PP, Mononen N et al (2021) Uncovering the shared lipidomic markers of subclinical osteoporosis-atherosclerosis comorbidity: The Young Finns Study. Bone 151:116030. https://doi.org/10.1016/j.bone.2021.116030

    Article  CAS  PubMed  Google Scholar 

  14. Zhou R, Guo Q, Xiao Y et al (2021) Endocrine role of bone in the regulation of energy metabolism. Bone Res 9:1–19. https://doi.org/10.1038/s41413-021-00142-4

    Article  CAS  Google Scholar 

  15. Tamme R, Jürimäe J, Mäestu E et al (2019) Physical activity in puberty is associated with total body and femoral neck bone mineral characteristics in males at 18 years of age. Med (Mex) 55:203. https://doi.org/10.3390/medicina55050203

    Article  Google Scholar 

  16. Kraav J, Tamme R, Remmel L et al (2022) Arterial structure in 18-year-old males is dependent on physical activity at 12 years and cumulative cardiorespiratory fitness from puberty to late adolescence. Pediatr Exerc Sci 1:1–11. https://doi.org/10.1123/pes.2022-0002

    Article  Google Scholar 

  17. Wilkinson IB, Fuchs SA, Jansen IM et al (1998) Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens 16:2079–2084. https://doi.org/10.1097/00004872-199816121-00033

    Article  CAS  PubMed  Google Scholar 

  18. DeLoach SS, Townsend RR (2008) Vascular stiffness: its measurement and significance for epidemiologic and outcome studies. Clin J Am Soc Nephrol CJASN 3:184–192. https://doi.org/10.2215/CJN.03340807

    Article  PubMed  Google Scholar 

  19. Estrada A, Ramnitz MS, Gafni RI (2014) Bone densitometry in children and adolescents. Curr Opin Obstet Gynecol 26:339–346. https://doi.org/10.1097/GCO.0000000000000100

    Article  PubMed  Google Scholar 

  20. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339. https://doi.org/10.1210/jcem-73-6-1332

    Article  CAS  PubMed  Google Scholar 

  21. Barlow SE, and the Expert Committee (2007) Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics 120:S164–S192. https://doi.org/10.1542/peds.2007-2329C

  22. World Health Organization (2020) WHO guidelines on physical activity and sedentary behaviour. https://www.who.int/news-room/fact-sheets/detail/physical-activity. Accessed 23 Mar 2022

  23. Welsman J, Armstrong N (2019) Interpreting aerobic fitness in youth: the fallacy of ratio scaling. Pediatr Exerc Sci 31:184–190. https://doi.org/10.1123/pes.2018-0141

    Article  PubMed  Google Scholar 

  24. Armstrong N, van Mechelen W (2008) Chapter: aerobic fitness. In: Armstrong N, van Mechelen W (eds) Pediatric exercise science and medicine, 2nd edn. Oxford University Press, pp 98–101

    Chapter  Google Scholar 

  25. Marshall WA, Tanner JM (1970) Variations in the Pattern of Pubertal Changes in Boys. Arch Dis Child 45:13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duke PM, Litt IF, Gross RT (1980) Adolescents’ Self-Assessment of Sexual Maturation. Pediatrics 66:918–920

    Article  CAS  PubMed  Google Scholar 

  27. Neuhauser HK, Büschges J, Schaffrath Rosario A et al (2022) Carotid intima-media thickness percentiles in adolescence and young adulthood and their association with obesity and hypertensive blood pressure in a population cohort. Hypertens Dallas Tex 1979 HYPERTENSIONAHA12118521. https://doi.org/10.1161/HYPERTENSIONAHA.121.18521

  28. Doyon A, Kracht D, Bayazit AK et al (1979) (2013) Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertens Dallas Tex 62:550–556. https://doi.org/10.1161/HYPERTENSIONAHA.113.01297

    Article  CAS  Google Scholar 

  29. Drole Torkar A, Plesnik E, Groselj U et al (2020) Carotid intima-media thickness in healthy children and adolescents: normative data and systematic literature review. Front Cardiovasc Med 7:597768. https://doi.org/10.3389/fcvm.2020.597768

    Article  PubMed  PubMed Central  Google Scholar 

  30. van BS, Groothuis-Oudshoorn K (2011) Mice: multivariate imputation by chained equations in r. J Stat Softw 45:1–67. https://doi.org/10.18637/jss.v045.i03

    Article  Google Scholar 

  31. Santos LMD, Gomes IC, Pinho JF et al (2021) Predictors and reference equations for augmentation index, an arterial stiffness marker, in healthy children and adolescents. Clinics (Sao Paulo) 76:e2350. https://doi.org/10.6061/clinics/2021/e2350

    Article  PubMed  Google Scholar 

  32. Semmler L, Weberruß H, Baumgartner L et al (2021) Vascular diameter and intima-media thickness to diameter ratio values of the carotid artery in 642 healthy children. Eur J Pediatr 180:851–860. https://doi.org/10.1007/s00431-020-03785-3

    Article  PubMed  Google Scholar 

  33. Panchangam C, Merrill ED, Raghuveer G (2018) Utility of arterial stiffness assessment in children. Cardiol Young 28:362–376. https://doi.org/10.1017/S1047951117002402

    Article  PubMed  Google Scholar 

  34. Wang Y-Q, Yang P-T, Yuan H et al (2015) Low bone mineral density is associated with increased arterial stiffness in participants of a health records based study. J Thorac Dis 7:790–798. https://doi.org/10.3978/j.issn.2072-1439.2015.04.47

    Article  PubMed  PubMed Central  Google Scholar 

  35. Armstrong N, Mechelen W (2017) Pre-clinical signs of early vascular aging. In: Oxford Textbook of Children’s Sport and Exercise Medicine, Third. Oxford University Press, pp 245–247

    Chapter  Google Scholar 

  36. Cassidy-Bushrow AE, Bielak LF, Sheedy PF et al (2011) Shared genetic architecture in the relationship between adult stature and subclinical coronary artery atherosclerosis. Atherosclerosis 219:679–683. https://doi.org/10.1016/j.atherosclerosis.2011.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weaver CM (2002) Adolescence: the period of dramatic bone growth. Endocrine 17:43–48. https://doi.org/10.1385/ENDO:17:1:43

    Article  CAS  PubMed  Google Scholar 

  38. Florencio-Silva R, da Silva Sasso GR, Sasso-Cerri E et al (2015) Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Biomed Res Int 2015:421746. https://doi.org/10.1155/2015/421746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stagi S, Cavalli L, Iurato C et al (2013) Bone metabolism in children and adolescents: main characteristics of the determinants of peak bone mass. Clin Cases Miner Bone Metab 10:172–179

    PubMed  Google Scholar 

  40. Mizokami A, Yasutake Y, Gao J et al (2013) Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS One 8:e57375. https://doi.org/10.1371/journal.pone.0057375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Du J, Zhang M, Lu J et al (2016) Osteocalcin improves nonalcoholic fatty liver disease in mice through activation of Nrf2 and inhibition of JNK. Endocrine 53:701–709. https://doi.org/10.1007/s12020-016-0926-5

    Article  CAS  PubMed  Google Scholar 

  42. Nilsson O, Marino R, De Luca F et al (2005) Endocrine regulation of the growth plate. Horm Res 64:157–165. https://doi.org/10.1159/000088791

    Article  CAS  PubMed  Google Scholar 

  43. Girerd N, Cleland J, Anker SD et al (2022) Inflammation and remodeling pathways and risk of cardiovascular events in patients with ischemic heart failure and reduced ejection fraction. Sci Rep 12:8574. https://doi.org/10.1038/s41598-022-12385-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zachariah JP, Xanthakis V, Larson MG et al (2012) Circulating vascular growth factors and central hemodynamic load in the community. Hypertension 59:773–779. https://doi.org/10.1161/HYPERTENSIONAHA.111.179242

    Article  CAS  PubMed  Google Scholar 

  45. Lazdam M, Lewandowski AJ, Kylintireas I et al (2012) Impaired endothelial responses in apparently healthy young people associated with subclinical variation in blood pressure and cardiovascular phenotype. Am J Hypertens 25:46–53. https://doi.org/10.1038/ajh.2011.176

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the grant from the Estonian Research Council PRG1120 and PRG1428.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in designing of the study, discussed the results and implications, and commented on the paper at all stages.

Corresponding author

Correspondence to Juta Kraav.

Ethics declarations

Ethical approval

The study was conducted following the Declaration of Helsinki, and the protocol for analysis was approved by the Ethics Committee of the University of Tartu (Consent No 327-T20, 19.10.2020). Written informed consent was received from each study participant and their legal guardian where applicable. Cumulative and/or summary research data will be made available upon request to the corresponding author of the article. The raw participant data are not publicly available due to privacy and ethical restrictions.

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 12 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraav, J., Zagura, M., Remmel, L. et al. Rapid trabecular bone growth in puberty associated with stiffer arteries in adulthood – longitudinal study on healthy young males. Arch Osteoporos 18, 62 (2023). https://doi.org/10.1007/s11657-023-01257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-023-01257-3

Keywords

Navigation