Skip to main content

Advertisement

Log in

Effect of degeneration on bone mineral density, trabecular bone score and CT Hounsfield unit measurements in a spine surgery patient population

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study investigated the impact of spinal degeneration on bone mineral density (BMD), trabecular bone score (TBS), and CT Hounsfield units in an at-risk population. We found that BMD was increased by degeneration, whereas TBS and HU were unaffected. These findings support that TBS is not adversely affected by spinal degeneration.

Introduction

This study evaluated the impact of spinal degeneration on BMD and TBS measured by dual-energy x-ray absorptiometry (DXA) and on CT HU in a spine surgery patient population.

Methods

A retrospective study of 63 patients referred for consideration of spine surgery or with history of spine surgery was performed. Patients were included if a DXA scan and a CT containing the lumbar spine were obtained within 18 months of each other. DXA data were collected and analyzed by vertebral level. Individual vertebrae were assessed for degenerative changes by qualitative evaluation of the anterior and posterior elements using CT. Degeneration scores were compared to BMD T-scores, TBS and CT HU at individual vertebral levels L1-4, and after applying International Society for Clinical Densitometry (ISCD) criteria for excluding vertebrae from diagnostic consideration.

Results

Mean patient age and BMI were 67.2 years and 27.8 kg/m2, respectively; 79.4% were female. Mean (SD) lowest T-scores of the hip, spine, and lowest overall T-score were − 1.3 (1.4), − 1.7 (0.9), and − 1.9 (1.0), respectively. Osteoporosis was present by T-score in 38% and osteopenia in 52%; 10% had a history of osteoporotic fracture. The mean degeneration score of individual vertebrae was 4.1 on a 0–6 scale. T-score correlated moderately with degeneration score (Spearman’s rho 0.484, p < 0.001), whereas TBS and HU were unrelated. ISCD excluded vertebrae had a higher degeneration score than included vertebrae (p =  < 0.001).

Conclusions

In a spine surgery population, TBS and CT HU values are unrelated to degeneration score and thus appear unaffected by lumbar vertebral degenerative changes. Additionally, these data support the ISCD criteria for vertebral exclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All authors have full access to data.

Code availability

NA.

Abbreviations

DXA:

Dual energy x-ray absorptiometry

TBS:

Trabecular bone score

HU:

CT Hounsfield Unit

BMD:

Bone mineral density

ROI:

Region of interest

WHO:

World Health Organization

NOF:

National Osteoporosis Foundation

ISCD:

International Society for Clinical Densitometry

References

  1. World Health Organization (1994) “Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group [meeting held in Rome from 22 to 25 June 1992]”, [Online]. Available: https://apps.who.int/iris/handle/10665/39142. Accessed 14 July 2020

  2. Jain RK, Vokes T (2017) Dual-energy X-ray absorptiometry. J Clin Densitom 20(3):291–303. https://doi.org/10.1016/j.jocd.2017.06.014

    Article  PubMed  Google Scholar 

  3. Kadri A, Anderson PA, Binkley N, Hare KJ (2020) Bone health optimization in orthopedic surgery. J Bone Jt Surg Am 102(7):574–581. https://doi.org/10.2106/JBJS.19.00999

    Article  Google Scholar 

  4. Shuhart CR et al (2019) Executive summary of the 2019 ISCD position development conference on monitoring treatment, DXA cross-calibration and least significant change, spinal cord injury, peri-prosthetic and orthopedic bone health, transgender medicine, and pediatrics. J Clin Densitom 22(4):453–471. https://doi.org/10.1016/j.jocd.2019.07.001

  5. Hans D et al (2006) Skeletal sites for osteoporosis diagnosis: the 2005 ISCD official positions. J Clin Densitom 9(1):15–21. https://doi.org/10.1016/j.jocd.2006.05.003

    Article  PubMed  Google Scholar 

  6. Kettler A, Wilke HJ (2006) Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J 15(6):705–718. https://doi.org/10.1007/s00586-005-0954-y

    Article  PubMed  Google Scholar 

  7. Mimura VAM, Panjabe MM, Oxland TR, Crisco JJ, Yamamoto I (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine (Phila Pa 1976) 19(12):1371–1380

    Article  CAS  Google Scholar 

  8. Pathria RDM, Sartoris DJ (1987) Osteoarthritis of the facet joints: accuracy of oblique radiographic assessment. Radiology 164:227–230

    Article  CAS  Google Scholar 

  9. Martineau P et al (2017) Clinical utility of using lumbar spine trabecular bone score to adjust fracture probability: the Manitoba BMD cohort. J Bone Miner Res 32(7):1568–1574. https://doi.org/10.1002/jbmr.3124

    Article  PubMed  Google Scholar 

  10. Harvey NC et al (2015) Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78(78):216–224. https://doi.org/10.1016/j.bone.2015.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anderson KB, Holloway-Kew KL, Mohebbi M, Kotowicz MA, Hans D, Pasco JA (2018) Is trabecular bone score less affected by degenerative-changes at the spine than lumbar spine BMD? Arch Osteoporos 13(1):127. https://doi.org/10.1007/s11657-018-0544-3

  12. Kolta S et al (2014) TBS result is not affected by lumbar spine osteoarthritis. Osteoporos Int 25(6):1759–1764. https://doi.org/10.1007/s00198-014-2685-6

    Article  CAS  PubMed  Google Scholar 

  13. Padlina I et al (2017) The lumbar spine age-related degenerative disease influences the BMD not the TBS: the Osteolaus cohort. Osteoporos Int 28(3):909–915. https://doi.org/10.1007/s00198-016-3829-7

    Article  CAS  PubMed  Google Scholar 

  14. White R, Binkley NC, Krueger D (2018) Effect of vertebral exclusion on TBS and FRAX calculations. Arch Osteoporos 13:(1). https://doi.org/10.1007/s11657-018-0501-1

  15. Lee SJ, Binkley N, Lubner MG, Bruce RJ, Ziemlewicz TJ, Pickhardt PJ (2016) Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporos Int 27(3):1131–1136. https://doi.org/10.1007/s00198-015-3318-4

    Article  CAS  PubMed  Google Scholar 

  16. Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158(8):588–595. https://doi.org/10.7326/0003-4819-158-8-201304160-00003

    Article  PubMed  PubMed Central  Google Scholar 

  17. Anderson PA, Polly DW, Binkley NC, Pickhardt PJ (2018) Clinical use of opportunistic computed tomography screening for osteoporosis. J Bone Jt Surg - Am 100(23):2073–2081. https://doi.org/10.2106/JBJS.17.01376

    Article  Google Scholar 

  18. Garner HW, Paturzo MM, Gaudier G, Pickhardt PJ, Wessell DE (2017) Variation in attenuation in L1 trabecular bone at different tube voltages: caution is warranted when screening for osteoporosis with the use of opportunistic CT. Am J Roentgenol 208(1):165–170. https://doi.org/10.2214/AJR.16.16744

    Article  Google Scholar 

  19. Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG (2011) Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Jt Surg - Ser A 93(11):1057–1063. https://doi.org/10.2106/JBJS.J.00160

    Article  Google Scholar 

  20. Pickhardt PJ et al (2016) Effect of IV contrast on lumbar trabecular attenuation at routine abdominal CT: correlation with DXA and implications for opportunistic osteoporosis screening. Osteoporos Int 27(1):147–152. https://doi.org/10.1007/s00198-015-3224-9

    Article  CAS  PubMed  Google Scholar 

  21. Hendrickson NR, Pickhardt PJ, Del Rio AM, Rosas HG, Anderson PA (2018) Bone mineral density T-scores derived from CT attenuation numbers (Hounsfield Units): clinical utility and correlation with dual-energy X-ray absorptiometry. Iowa Orthop J 38(319):25–31

    PubMed  PubMed Central  Google Scholar 

  22. IBM Corporation (2019) IBM SPSS Statistics for Windows. IBM Corp., Armonk, NY, [Online]. Available: https://www.ibm.com/analytics/spss-statistics-software. Accessed 7/1/2020

  23. JASP Team (2020) JASP Computer Software. [Online]. Available: https://jasp-stats.org. Accessed 29 May 2020

  24. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

  25. Padlina I, Gonzalez-Rodriguez E, Hans D et al (2016) The lumbar spine age-related degenerative disease influences the BMD not the TBS: the Osteolaus cohort. Osteoporos Int 28:909–915

    Article  Google Scholar 

  26. Schneider DL, Bettencourt R, Barrett-Connor E (2006) Clinical utility of spine bone density in elderly women. J Clin Densitom 9(3):255–260. https://doi.org/10.1016/j.jocd.2006.04.116

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ried IR, Evans MC, Ames R, Wattie DJ (1991) The influence of aortic calcification on spinal bone mineral density in postmenopausal women. J Clin Endocrinol Metab 72(6):1372–1374. https://doi.org/10.1007/s002239900079

    Article  Google Scholar 

  28. Orwoll ES, Oviatt SK, Mann T (1990) The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 70(4):1202–1207. https://doi.org/10.1210/jcem-70-4-1202

    Article  CAS  PubMed  Google Scholar 

  29. Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the manitoba study. J Bone Miner Res 26(11):2762–2769. https://doi.org/10.1002/jbmr.499

    Article  PubMed  Google Scholar 

  30. Leslie WD et al (2014) Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos Int 25(9):2271–2277. https://doi.org/10.1007/s00198-014-2761-y

    Article  CAS  PubMed  Google Scholar 

  31. Dufour R, Winzenrieth R, Heraud A, Hans D, Mehsen N (2013) Generation and validation of a normative, age-specific reference curve for lumbar spine trabecular bone score (TBS) in French women. Osteoporos Int 24(11):2837–2846. https://doi.org/10.1007/s00198-013-2384-8

    Article  CAS  PubMed  Google Scholar 

  32. Zou D, Li W, Xu F, Du G (2019) Use of Hounsfield units of S1 body to diagnose osteoporosis in patients with lumbar degenerative diseases. Neurosurg Focus 46(5)E6:1–5. https://doi.org/10.3171/2019.2.FOCUS18614

  33. Christensen DL et al (2019) Proximal femur hounsfield units on CT colonoscopy correlate with dual-energy X-ray absorptiometry. Clin Orthop Relat Res 477(4):850–860. https://doi.org/10.1097/CORR.0000000000000480

    Article  PubMed  Google Scholar 

  34. Johnson CC, Gausden EB, Weiland AJ, Lane JM, Schreiber JJ (2016) Using Hounsfield units to assess osteoporotic status on wrist computed tomography scans: comparison with dual energy X-ray absorptiometry. J Hand Surg Am 41(7):767–774. https://doi.org/10.1016/j.jhsa.2016.04.016

    Article  PubMed  Google Scholar 

  35. Pervaiz K, Cabezas A, Downes K, Santoni BG, Frankle MA (2013) Osteoporosis and shoulder osteoarthritis: incidence, risk factors, and surgical implications. J Shoulder Elb Surg 22(3):e1. https://doi.org/10.1016/j.jse.2012.05.029

    Article  Google Scholar 

  36. Berger C et al (2008) Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents. CMAJ 178(13):1660–1668. https://doi.org/10.1503/cmaj.071416

    Article  PubMed  PubMed Central  Google Scholar 

  37. Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13(2):105–112. https://doi.org/10.1007/s001980200001

    Article  CAS  PubMed  Google Scholar 

  38. Hui SL et al (1999) Rates of growth and loss of bone mineral in the spine and femoral neck in white females. Osteoporos Int 9(3):200–205. https://doi.org/10.1007/s001980050137

    Article  CAS  PubMed  Google Scholar 

  39. Löfman O, Larsson L, Ross I, Toss G, Berglund K (1997) Bone mineral density in normal Swedish women. Bone 20(2):167–174. https://doi.org/10.1016/S8756-3282(96)00345-6

    Article  PubMed  Google Scholar 

  40. Mazess RB, Barden H (1999) Bone density of the spine and femur in adult white females. Calcif Tissue Int 65(2):91–99. https://doi.org/10.1007/s002239900663

    Article  CAS  PubMed  Google Scholar 

  41. Tang GWK, Yip PSF, Li BYG (2001) The profile of bone mineral density in Chinese women: its changes and significance in a longitudinal study. Osteoporos Int 12(8):647–653. https://doi.org/10.1007/s001980170064

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

University of Wisconsin School of Medicine and Public Health Shapiro Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Anderson.

Ethics declarations

Ethics approval and consent to participate

Determined exempt by the UW Health Sciences IRB: Submission ID Number 2020–0624. For this type of study formal consent is not required.

Consent for publication

NA

Conflicts of interest

The authors Alexander C. Hayden, BS, Neil Binkley, MD1, Diane Krueger, BS, James T. Bernatz, MD, Aamir Kadri, MS, and Paul A. Anderson, MD, declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayden, A.C., Binkley, N., Krueger, D. et al. Effect of degeneration on bone mineral density, trabecular bone score and CT Hounsfield unit measurements in a spine surgery patient population. Osteoporos Int 33, 1775–1782 (2022). https://doi.org/10.1007/s00198-022-06407-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06407-w

Keywords

Navigation