Skip to main content

Advertisement

Log in

The efficacy and safety of bisphosphonate analogs for treatment of osteoporosis after spinal cord injury: a systematic review and meta-analysis of randomized controlled trials

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Bisphosphonates can inhibit osteoclast-mediated bone resorption, prevent bone loss, and reduce the risk of osteoporotic fractures. Our meta-analysis of studies shows that early bisphosphonate administration after SCI was safe and beneficial to the BMD of the total hip and lumbar spine at 12 months.

Introduction

Rapid bone loss in the early stages of spinal cord injury (SCI) leads to an increased risk of osteoporotic fracture. A meta-analysis was conducted to assess the efficacy and safety of bisphosphonates for the treatment of osteoporosis after SCI.

Methods

A literature search of the PubMed, EMBASE, Cochrane Library, and Web of Science databases identified nine randomized controlled trials with 206 individuals. This meta-analysis was performed using a random-effects model. The primary outcome was the percent change in bone mineral density (BMD) of the total hip, distal femur, and lumbar spine from baseline to 12 months. Bone turnover markers were secondary outcomes. The incidences of adverse events were assessed in order to evaluate safety.

Results

There were significant differences in BMD of the total hip and lumbar spine or serum C-terminal telopeptide between the bisphosphonate and control groups but no difference in adverse events. The percent change in BMD of the distal femur and serum type 1 procollagen N-terminal peptide from baseline to 12 months was not superior in the treatment groups. Osteoclast-mediated bone resorption was inhibited by bisphosphonate administration. Subgroup analyses of participants treated with zoledronate at different sites revealed a beneficial effect on BMD of the total hip and lumbar spine but not the distal femur.

Conclusion

Early bisphosphonate administration after SCI was safe and beneficial to the BMD of the total hip and lumbar spine at 12 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in published articles, which are available in PubMed, Embase, Web of Science, and Cochrane Library databases [21,22,23,24,25,26,27,28,29].

References

  1. Xie J, Deng X, Feng Y, Cao N, Zhang X, Fang F, Zhang S, Feng Y (2018) Early intradural microsurgery improves neurological recovery of acute spinal cord injury: a study of 87 cases. J Neurorestoratol 6(1):152–157. https://doi.org/10.26599/jnr.2018.9040014

    Article  Google Scholar 

  2. Kang Y, Ding H, Zhou H, Wei Z, Liu L, Pan D, Feng S (2018) Epidemiology of worldwide spinal cord injury: a literature review. J Neurorestoratol 6(1):1–9. https://doi.org/10.2147/jn.S143236

    Article  Google Scholar 

  3. Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, Schiessl H (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34(5):869–880. https://doi.org/10.1016/j.bone.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  4. Garland DE (1992) Osteoporosis after spinal cord injury. J Orthop Res 10:371–378

    Article  CAS  PubMed  Google Scholar 

  5. Minoshima M, Kikuta J, Omori Y, Seno S, Suehara R, Maeda H, Matsuda H, Ishii M, Kikuchi K (2019) In vivo multicolor imaging with fluorescent probes revealed the dynamics and function of osteoclast proton pumps. ACS Cent Sci 5(6):1059–1066. https://doi.org/10.1021/acscentsci.9b00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17(2):180–192. https://doi.org/10.1007/s00198-005-2028-8

    Article  PubMed  Google Scholar 

  7. Soleyman-Jahi S, Yousefian A, Maheronnaghsh R, Shokraneh F, Zadegan SA, Soltani A, Hosseini SM, Vaccaro AR, Rahimi-Movaghar V (2018) Evidence-based prevention and treatment of osteoporosis after spinal cord injury: a systematic review. Eur Spine J 27(8):1798–1814. https://doi.org/10.1007/s00586-017-5114-7

    Article  PubMed  Google Scholar 

  8. Fleisch H (1993) New bisphosphonates in osteoporosis. Osteoporos Int 3:S15–S22

    Article  PubMed  Google Scholar 

  9. Brodowicz T, O’Byrne K, Manegold C (2012) Bone matters in lung cancer. Ann Oncol 23(9):2215–2222. https://doi.org/10.1093/annonc/mds009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shapiro CL, Moriarty JP, Dusetzina S, Himelstein AL, Foster JC, Grubbs SS, Novotny PJ, Borah BJ (2017) Cost-effectiveness analysis of monthly zoledronic acid, zoledronic acid every 3 months, and monthly denosumab in women with breast cancer and skeletal metastases. J Clin Oncol 35(35):3949–3955. https://doi.org/10.1200/JCO.2017.73.7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moher D, Liberati A, Tetzlaff J (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jokstad A (2017) Cochrane Collaboration Systematic Reviews may be based on trials not approved by a research ethics committee. Clin Exp Dent Res 3(5):179–182

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chang KV, Chen SY, Chen WS, Tu YK, Chien KL (2012) Comparative effectiveness of focused shock wave therapy of different intensity levels and radial shock wave therapy for treating plantar fasciitis: a systematic review and network meta-analysis. Arch Phys Med Rehabil 93:1259–1268. https://doi.org/10.1016/j.apmr.2012.02.023

    Article  PubMed  Google Scholar 

  14. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li T, Ma J, Zhao T, Gao F, Sun W (2019) Application and efficacy of extracorporeal shockwave treatment for knee osteoarthritis: a systematic review and meta-analysis. Exp Ther Med 18(4):2843–2850. https://doi.org/10.3892/etm.2019.7897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thorlund K, Imberger G, Johnston BC, Walsh M, Awad T, Thabane L, Gluud C, Devereaux PJ, Wetterslev J (2012) Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS One 7(7):e39471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Firth J, Teasdale SB, Allott K, Siskind D, Marx W, Cotter J, Veronese N, Schuch F, Smith L, Solmi M, Carvalho AF, Vancampfort D, Berk M, Stubbs B, Sarris J (2019) The efficacy and safety of nutrient supplements in the treatment of mental disorders: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry 18(3):308–324. https://doi.org/10.1002/wps.20672

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bradburn MJ, Deeks JJ, Berlin JA (2007) Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med 26(1):53–77

    Article  PubMed  Google Scholar 

  19. Park HR, Kim JH, Lee D, Jo HG (2019) Cangfu daotan decoction for polycystic ovary syndrome: a protocol of systematic review and meta-analysis. Medicine (Baltimore) 98(39):e17321. https://doi.org/10.1097/MD.0000000000017321

    Article  CAS  Google Scholar 

  20. Palmer SC, Nistor I, Craig JC, Pellegrini F, Messa P, Tonelli M, Covic A, Strippoli GF (2013) Cinacalcet in patients with chronic kidney disease: a cumulative meta-analysis of randomized controlled trials. PLoS Med 10(4):e1001436. https://doi.org/10.1371/journal.pmed.1001436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bauman WA, Wecht JM, Kirshblum S, Spungen AM, Morrison N, Cirnigliaro C, Schwartz E (2005) Effect of pamidronate administration on bone in patients with acute spinal cord injury. J Rehabil Res Dev 42(3):305–313. https://doi.org/10.1682/JRRD.2004.05.0062

    Article  PubMed  Google Scholar 

  22. Bubbear JS, Gall A, Middleton FR, Ferguson-Pell M, Swaminathan R, Keen RW (2011) Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int 22(1):271–279. https://doi.org/10.1007/s00198-010-1221-6

    Article  CAS  PubMed  Google Scholar 

  23. Gilchrist NL, Frampton CM, Acland RH, Nicholls MG, March RL, Maguire P, Heard A, Reilly P, Marshall K (2007) Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 92(4):1385–1390. https://doi.org/10.1210/jc.2006-2013

    Article  CAS  PubMed  Google Scholar 

  24. Goenka S, Sethi S, Pandey N, Joshi M, Jindal R (2018) Effect of early treatment with zoledronic acid on prevention of bone loss in patients with acute spinal cord injury: a randomized controlled trial. Spinal Cord 56(12):1207–1211. https://doi.org/10.1038/s41393-018-0195-7

    Article  PubMed  Google Scholar 

  25. Moran De Brito CM, Battistella LR, Saito ET, Sakamoto H (2005) Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study. Spinal Cord 43(6):341–348. https://doi.org/10.1038/sj.sc.3101725

    Article  CAS  PubMed  Google Scholar 

  26. Oleson CV, Marino RJ, Formal CS, Modlesky CM, Leiby BE (2020) The effect of zoledronic acid on attenuation of bone loss at the hip and knee following acute traumatic spinal cord injury: a randomized-controlled study. Spinal Cord 58:921–929. https://doi.org/10.1038/s41393-020-0431-9

    Article  PubMed  Google Scholar 

  27. Schnitzer TJ, Kim K, Marks J, Yeasted R, Simonian N, Chen D (2016) Zoledronic acid treatment after acute spinal cord injury: results of a randomized, placebo-controlled pilot trial. Pm r 8(9):833–843. https://doi.org/10.1016/j.pmrj.2016.01.012

    Article  PubMed  Google Scholar 

  28. Shapiro J, Smith B, Beck T, Ballard P, Dapthary M, BrintzenhofeSzoc K, Caminis J (2007) Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury. Calcif Tissue Int 80(5):316–322. https://doi.org/10.1007/s00223-007-9012-6

    Article  CAS  PubMed  Google Scholar 

  29. Varghese SM, Chandy BR, Thomas R, Tharion G (2016) Effect of zoledronic acid on osteoporosis after chronic spinal cord injury: a randomized controlled trial. Crit Rev Phys Rehabil Med 28(1-2):85–93. https://doi.org/10.1615/CritRevPhysRehabilMed.2016018768

    Article  Google Scholar 

  30. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 7041(312):1254–1259. https://doi.org/10.1136/bmj.312.7041.1254

    Article  Google Scholar 

  31. Garland DE, Adkins RH, Kushwaha V, Stewart C (2004) Risk factors for osteoporosis at the knee in the spinal cord injury population. J Spinal Cord Med 27(3):202–206. https://doi.org/10.1080/10790268.2004.11753748

    Article  PubMed  Google Scholar 

  32. Bauman WA, Cirnigliaro CM, La Fountaine MF, Martinez LA, Kirshblum SC, Spungen AM (2015) Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab 33(4):410–421. https://doi.org/10.1007/s00774-014-0602-x

    Article  CAS  PubMed  Google Scholar 

  33. Cranney A, Wells G, Willan A, Griffith L, Zytaruk N, Robinson V, Black D, Adachi JD, Shea B, Tugwell P, Guyatt G (2002) Metaanalyses of therapies for postmenopausal osteoporosis. II. Metaanalysis of alendronate for the treatment of postmenopausal women. Endocr Rev 23:508–516

    Article  CAS  PubMed  Google Scholar 

  34. Nance PW, Schryvers O, Leslie W, Ludwig S, Krahn J, Uebelhart D (1999) Intravenous pamidronate attenuates bone density loss after acute spinal cord injury. Arch Phys Med Rehabil 3(80):243–251

    Article  Google Scholar 

  35. Zehnder Y, Risi S, Michel D, Knecht H, Perrelet R, Kraenzlin M, Zäch GA, Lippuner K (2004) Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res 19(7):1067–1074. https://doi.org/10.1359/JBMR.040313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Spine Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center for the generous support and the International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Funding

Projects of China Rehabilitation Research Center (NO.2017ZX-02) and Capital’s Funds for Health Improvement and Research (NO.2018-3-6012) funded this submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Wang.

Ethics declarations

Conflict of interest

None.

Code availability

Analyses were conducted using Review Manager 5.3 software (https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, F. & Zhang, Z. The efficacy and safety of bisphosphonate analogs for treatment of osteoporosis after spinal cord injury: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 32, 1117–1127 (2021). https://doi.org/10.1007/s00198-020-05807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05807-0

Keywords

Navigation