Matricciani L, Olds T, Petkov J (2012) In search of lost sleep: secular trends in the sleep time of school-aged children and adolescents. Sleep Med Rev 16(3):203–211. https://doi.org/10.1016/j.smrv.2011.03.005
Article
PubMed
Google Scholar
Crowley SJ, Van Reen E, LeBourgeois MK, Acebo C, Tarokh L, Seifer R, Barker DH, Carskadon MA (2014) A longitudinal assessment of sleep timing, circadian phase, and phase angle of entrainment across human adolescence. PLoS One 9(11):e112199. https://doi.org/10.1371/journal.pone.0112199
CAS
Article
PubMed
PubMed Central
Google Scholar
Fricke-Oerkermann L, Pluck J, Schredl M, Heinz K, Mitschke A, Wiater A, Lehmkuhl G (2007) Prevalence and course of sleep problems in childhood. Sleep 30(10):1371–1377. https://doi.org/10.1093/sleep/30.10.1371
Article
PubMed
PubMed Central
Google Scholar
Hysing M, Pallesen S, Stormark KM, Lundervold AJ, Sivertsen B (2013) Sleep patterns and insomnia among adolescents: a population-based study. J Sleep Res 22(5):549–556. https://doi.org/10.1111/jsr.12055
Article
PubMed
Google Scholar
Hausler N, Marques-Vidal P, Haba-Rubio J, Heinzer R (2019) Does sleep predict next-day napping or does napping influence same-day nocturnal sleep? Results of a population-based ecological momentary assessment study. Sleep Med 61:31–36. https://doi.org/10.1016/j.sleep.2019.04.014
Article
PubMed
Google Scholar
Paruthi S, Brooks LJ, D'Ambrosio C, Hall WA, Kotagal S, Lloyd RM, Malow BA, Maski K, Nichols C, Quan SF, Rosen CL, Troester MM, Wise MS (2016) Recommended amount of sleep for pediatric populations: a consensus statement of the american Academy of Sleep Medicine. J Clin Sleep Med 12(6):785–786. https://doi.org/10.5664/jcsm.5866
Article
PubMed
PubMed Central
Google Scholar
Potter GD, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ (2016) Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures. Endocr Rev 37(6):584–608. https://doi.org/10.1210/er.2016-1083
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuriyama N, Inaba M, Ozaki E, Yoneda Y, Matsui D, Hashiguchi K, Koyama T, Iwai K, Watanabe I, Tanaka R, Omichi C, Mizuno S, Kurokawa M, Horii M, Niwa F, Iwasa K, Yamada S, Watanabe Y (2017) Association between loss of bone mass due to short sleep and leptin-sympathetic nervous system activity. Arch Gerontol Geriatr 70:201–208. https://doi.org/10.1016/j.archger.2017.02.005
CAS
Article
PubMed
Google Scholar
Irwin MR, Olmstead R, Carroll JE (2016) Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry 80(1):40–52. https://doi.org/10.1016/j.biopsych.2015.05.014
Article
PubMed
Google Scholar
Krietsch KN, Chardon ML, Beebe DW, Janicke DM (2019) Sleep and weight-related factors in youth: a systematic review of recent studies. Sleep Med Rev 46:87–96. https://doi.org/10.1016/j.smrv.2019.04.010
Article
PubMed
Google Scholar
Wang D, Ruan W, Peng Y, Li W (2018) Sleep duration and the risk of osteoporosis among middle-aged and elderly adults: a dose-response meta-analysis. Osteoporos Int 29(8):1689–1695. https://doi.org/10.1007/s00198-018-4487-8
CAS
Article
PubMed
Google Scholar
Lucassen EA, de Mutsert R, le Cessie S, Appelman-Dijkstra NM, Rosendaal FR, van Heemst D, den Heijer M, Biermasz NR (2017) Poor sleep quality and later sleep timing are risk factors for osteopenia and sarcopenia in middle-aged men and women: the NEO study. PLoS One 12(5):e0176685. https://doi.org/10.1371/journal.pone.0176685
CAS
Article
PubMed
PubMed Central
Google Scholar
Sasaki N, Fujiwara S, Yamashita H, Ozono R, Teramen K, Kihara Y (2016) Impact of sleep on osteoporosis: sleep quality is associated with bone stiffness index. Sleep Med 25:73–77. https://doi.org/10.1016/j.sleep.2016.06.029
Article
PubMed
Google Scholar
Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O'Karma M, Wallace TC, Zemel BS (2016) The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27(4):1281–1386. https://doi.org/10.1007/s00198-015-3440-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Casazza K, Hanks LJ, Fernandez JR (2011) Shorter sleep may be a risk factor for impaired bone mass accrual in childhood. J Clin Densitom 14(4):453–457. https://doi.org/10.1016/j.jocd.2011.06.005
Article
PubMed
PubMed Central
Google Scholar
Nakagi Y, Ito T, Hirooka K, Sugioka Y, Endo H, Saijo Y, Imai H, Takeda H, Kayama F, Sasaki S, Yoshida T (2010) Association between lifestyle habits and bone mineral density in Japanese juveniles. Environ Health Prev Med 15(4):222–228. https://doi.org/10.1007/s12199-009-0131-8
Article
PubMed
PubMed Central
Google Scholar
Taylor RW, Haszard JJ, Meredith-Jones KA, Galland BC, Heath AM, Lawrence J, Gray AR, Sayers R, Hanna M, Taylor BJ (2018) 24-h movement behaviors from infancy to preschool: cross-sectional and longitudinal relationships with body composition and bone health. Int J Behav Nutr Phys Act 15(1):118. https://doi.org/10.1186/s12966-018-0753-6
Article
PubMed
PubMed Central
Google Scholar
Ahrens W, Siani A, Adan R, De Henauw S, Eiben G, Gwozdz W, Hebestreit A, Hunsberger M, Kaprio J, Krogh V, Lissner L, Molnar D, Moreno LA, Page A, Pico C, Reisch L, Smith RM, Tornaritis M, Veidebaum T, Williams G, Pohlabeln H, Pigeot I, consortium IF (2017) Cohort profile: the transition from childhood to adolescence in European children-how I.Family extends the IDEFICS cohort. Int J Epidemiol 46(5):1394–1395j. https://doi.org/10.1093/ije/dyw317
CAS
Article
PubMed
PubMed Central
Google Scholar
Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, Hazen N, Herman J, Adams Hillard PJ, Katz ES, Kheirandish-Gozal L, Neubauer DN, O'Donnell AE, Ohayon M, Peever J, Rawding R, Sachdeva RC, Setters B, Vitiello MV, Ware JC (2015) National Sleep Foundation's updated sleep duration recommendations: final report. Sleep Health 1(4):233–243. https://doi.org/10.1016/j.sleh.2015.10.004
Article
PubMed
Google Scholar
Magee CA, Robinson L, Keane C (2017) Sleep quality subtypes predict health-related quality of life in children. Sleep Med 35:67–73. https://doi.org/10.1016/j.sleep.2017.04.007
Article
PubMed
Google Scholar
UNESCO Institute for Statistics (2012) International standard classification of education: ISCED 2011. UNESCO Institute for Statistics, Montreal
Saraff V, Shaw N (2016) Sunshine and vitamin D. Arch Dis Child 101(2):190–192. https://doi.org/10.1136/archdischild-2014-307214
Article
PubMed
Google Scholar
Herrmann D, Intemann T, Lauria F, Marild S, Molnar D, Moreno LA, Sioen I, Tornaritis M, Veidebaum T, Pigeot I, Ahrens W, consortium I (2014) Reference values of bone stiffness index and C-terminal telopeptide in healthy European children. Int J Obes 38(Suppl 2):S76–S85. https://doi.org/10.1038/ijo.2014.138
Article
Google Scholar
Baroncelli GI (2008) Quantitative ultrasound methods to assess bone mineral status in children: technical characteristics, performance, and clinical application. Pediatr Res 63(3):220–228. https://doi.org/10.1203/PDR.0b013e318163a286
Article
PubMed
Google Scholar
Cole TJ, Lobstein T (2012) Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 7(4):284–294. https://doi.org/10.1111/j.2047-6310.2012.00064.x
CAS
Article
PubMed
Google Scholar
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
Cheng L, Pohlabeln H, Ahrens W, Lauria F, Veidebaum T, Chadjigeorgiou C, Molnár D, Eiben G, Michels N, Moreno LA, Page AS, Pitsiladis Y, Hebestreit A (2020) Cross-sectional and longitudinal associations between physical activity, sedentary behaviour and bone stiffness index across weight status in European children and adolescents. Int J Behav Nutr Phys Act 17(1):54. https://doi.org/10.1186/s12966-020-00956-1
Article
PubMed
PubMed Central
Google Scholar
Herrmann D, Buck C, Sioen I, Kouride Y, Marild S, Molnar D, Mouratidou T, Pitsiladis Y, Russo P, Veidebaum T, Ahrens W, consortium I (2015) Impact of physical activity, sedentary behaviour and muscle strength on bone stiffness in 2-10-year-old children-cross-sectional results from the IDEFICS study. Int J Behav Nutr Phys Act 12:112. https://doi.org/10.1186/s12966-015-0273-6
Article
PubMed
PubMed Central
Google Scholar
McCloskey EV, Kanis JA, Odén A, Harvey NC, Bauer D, González-Macias J, Hans D, Kaptoge S, Krieg MA, Kwok T, Marin F, Moayyeri A, Orwoll E, Gluёr C, Johansson H (2015) Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis. Osteoporos Int 26(7):1979–1987. https://doi.org/10.1007/s00198-015-3072-7
CAS
Article
PubMed
Google Scholar
Guglielmi G, de Terlizzi F (2009) Quantitative ultrasond in the assessment of osteoporosis. Eur J Radiol 71(3):425–431. https://doi.org/10.1016/j.ejrad.2008.04.060
Article
PubMed
Google Scholar
Gonnelli S, Cepollaro C, Montagnani A, Martini S, Gennari L, Mangeri M, Gennari C (2002) Heel ultrasonography in monitoring alendronate therapy: a four-year longitudinal study. Osteoporos Int 13(5):415–421. https://doi.org/10.1007/s001980200048
CAS
Article
PubMed
Google Scholar
Sahota O, San P, Cawte SA, Pearson D, Hosking DJ (2000) A comparison of the longitudinal changes in quantitative ultrasound with dual-energy X-ray absorptiometry: the four-year effects of hormone replacement therapy. Osteoporos Int 11(1):52–58. https://doi.org/10.1007/s001980050006
CAS
Article
PubMed
Google Scholar
Chen G, Chen L, Wen J, Yao J, Li L, Lin L, Tang K, Huang H, Liang J, Lin W, Chen H, Li M, Gong X, Peng S, Lu J, Bi Y, Ning G (2014) Associations between sleep duration, daytime nap duration, and osteoporosis vary by sex, menopause, and sleep quality. J Clin Endocrinol Metab 99(8):2869–2877. https://doi.org/10.1210/jc.2013-3629
CAS
Article
PubMed
Google Scholar
Saetung S, Reutrakul S, Chailurkit LO, Rajatanavin R, Ongphiphadhanakul B, Nimitphong H (2018) The association between daytime napping characteristics and bone mineral density in elderly thai women without osteoporosis. Sci Rep 8(1):10016. https://doi.org/10.1038/s41598-018-28260-w
CAS
Article
PubMed
PubMed Central
Google Scholar
Yamada T, Shojima N, Yamauchi T, Kadowaki T (2016) J-curve relation between daytime nap duration and type 2 diabetes or metabolic syndrome: a dose-response meta-analysis. Sci Rep 6:38075. https://doi.org/10.1038/srep38075
CAS
Article
PubMed
PubMed Central
Google Scholar
Yamada T, Hara K, Shojima N, Yamauchi T, Kadowaki T (2015) Daytime napping and the risk of cardiovascular disease and all-cause mortality: a prospective study and dose-response meta-analysis. Sleep 38(12):1945–1953. https://doi.org/10.5665/sleep.5246
Article
PubMed
PubMed Central
Google Scholar
Jakubowski KP, Hall MH, Marsland AL, Matthews KA (2016) Is daytime napping associated with inflammation in adolescents? Health Psychol 35(12):1298–1306. https://doi.org/10.1037/hea0000369
Article
PubMed
PubMed Central
Google Scholar
Chaput JP, Dutil C, Sampasa-Kanyinga H (2018) Sleeping hours: what is the ideal number and how does age impact this? Nat Sci Sleep 10:421–430. https://doi.org/10.2147/NSS.S163071
Article
PubMed
PubMed Central
Google Scholar
Zeng Y, Wu J, Yin J, Chen J, Yang S, Fang Y (2018) Association of the combination of sleep duration and sleep quality with quality of life in type 2 diabetes patients. Qual Life Res 27(12):3123–3130. https://doi.org/10.1007/s11136-018-1942-0
Article
PubMed
Google Scholar
Staab JS, Smith TJ, Wilson M, Montain SJ, Gaffney-Stomberg E (2019) Bone turnover is altered during 72 h of sleep restriction: a controlled laboratory study. Endocrine 65(1):192–199. https://doi.org/10.1007/s12020-019-01937-6
CAS
Article
PubMed
Google Scholar
Swanson CM, Shea SA, Wolfe P, Cain SW, Munch M, Vujovic N, Czeisler CA, Buxton OM, Orwoll ES (2017) Bone turnover markers after sleep restriction and circadian disruption: a mechanism for sleep-related bone loss in humans. J Clin Endocrinol Metab 102(10):3722–3730. https://doi.org/10.1210/jc.2017-01147
Article
PubMed
PubMed Central
Google Scholar
Master L, Nye RT, Lee S, Nahmod NG, Mariani S, Hale L, Buxton OM (2019) Bidirectional, daily temporal associations between sleep and physical activity in adolescents. Sci Rep 9(1):7732. https://doi.org/10.1038/s41598-019-44059-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Buysse DJ (2014) Sleep health: can we define it? Does it matter? Sleep 37(1):9–17. https://doi.org/10.5665/sleep.3298
Article
PubMed
PubMed Central
Google Scholar
Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F (2010) The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol 205(3):201–210. https://doi.org/10.1677/joe-09-0431
CAS
Article
PubMed
Google Scholar
Leproult R, Copinschi G, Buxton O, Van Cauter E (1997) Sleep loss results in an elevation of cortisol levels the next evening. Sleep 20(10):865–870
CAS
PubMed
Google Scholar