Skip to main content

Advertisement

Log in

Assessing the clinical utility of genetic profiling in fracture risk prediction: a decision curve analysis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Using decision curve analysis on 2188 women and 1324 men, we found that an osteogenomic profile constructed from 62 genetic variants improved the clinical net benefit of fracture risk prediction over and above that of clinical risk factors and BMD.

Introduction

Genetic profiling is a promising tool for assessing fracture risk. This study sought to use the decision curve analysis (DCA), a novel approach to determine the impact of genetic profiling on fracture risk prediction.

Methods

The study involved 2188 women and 1324 men, aged 60 years and above, who were followed for up to 23 years. Bone mineral density (BMD) and clinical risk factors were obtained at baseline. The incidence of fracture and mortality were recorded. A weighted individual genetic risk score (GRS) was constructed from 62 BMD-associated genetic variants. Four models were considered: CRF (clinical risk factors); CRF + GRS; Garvan model (GFRC) including CRF and femoral neck BMD; and GFRC + GRS. The DCA was used to evaluate the clinical net benefit of predictive models at a range of clinically reasonable risk thresholds.

Results

In both women and men, the full model GFRC + GRS achieved the highest net benefits. For 10-year risk threshold > 18% for women and > 15% for men, the GRS provided net benefit above those of the CRF models. At 20% risk threshold, adding the GRS could help to avoid 1 additional treatment per 81 women or 1 per 24 men compared with the Garvan model. At lower risk thresholds, there was no significant difference between the four models.

Conclusions

The addition of genetic profiling into the clinical risk factors can improve the net clinical benefit at higher risk thresholds of fracture. Although the contribution of genetic profiling was modest in the presence of BMD + CRF, it appeared to be able to replace BMD for fracture prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cefalu CA (2004) Is bone mineral density predictive of fracture risk reduction? Curr Med Res Opin 20:341–349

    Article  Google Scholar 

  2. Lofman O, Larsson L, Toss G (2000) Bone mineral density in diagnosis of osteoporosis: reference population, definition of peak bone mass, and measured site determine prevalence. J Clin Densitom 3:177–186

  3. Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

  4. Nguyen ND, Pongchaiyakul C, Center JR, Eisman JA, Nguyen TV (2005) Identification of high-risk individuals for hip fracture: a 14-year prospective study. J Bone Miner Res 20:1921–1928

  5. Leslie WD, Lix LM, Tsang JF, Caetano PA (2007) Single-site vs multisite bone density measurement for fracture prediction. Arch Intern Med 167:1641–1647

    Article  Google Scholar 

  6. Nguyen TV (2007) Individualization of osteoporosis risk. Osteoporos Int 18:1153–1156

  7. Nguyen TV, Eisman JA (2013) Genetic profiling and individualized assessment of fracture risk. Nat Rev Endocrinol 9:153–161

    Article  Google Scholar 

  8. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, Koller DL, Li G, Liu CT, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao SM, Yerges-Armstrong LM, Zheng HF, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF, Aalto V, Alen M, Aragaki AK, Aspelund T, Center JR, Dailiana Z, Duggan DJ, Garcia M, Garcia-Giralt N, Giroux S, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Khusainova R, Kim GS, Kooperberg C, Koromila T, Kruk M, Laaksonen M, Lacroix AZ, Lee SH, Leung PC, Lewis JR, Masi L, Mencej-Bedrac S, Nguyen TV, Nogues X, Patel MS, Prezelj J, Rose LM, Scollen S, Siggeirsdottir K, Smith AV, Svensson O, Trompet S, Trummer O, van Schoor N, Woo J, Zhu K, Balcells S, Brandi ML, Buckley BM, Cheng S, Christiansen C, Cooper C, Dedoussis G, Ford I, Frost M, Goltzman D, González-Macías J, Kähönen M, Karlsson M, Khusnutdinova E, Koh JM, Kollia P, Langdahl BL, Leslie WD, Lips P, Ljunggren Ö, Lorenc RS, Marc J, Mellström D, Obermayer-Pietsch B, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Ridker PM, Rousseau F, Slagboom PE, Tang NL, Urreizti R, van Hul W, Viikari J, Zarrabeitia MT, Aulchenko YS, Castano-Betancourt M, Grundberg E, Herrera L, Ingvarsson T, Johannsdottir H, Kwan T, Li R, Luben R, Medina-Gómez C, Palsson ST, Reppe S, Rotter JI, Sigurdsson G, van Meurs J, Verlaan D, Williams FM, Wood AR, Zhou Y, Gautvik KM, Pastinen T, Raychaudhuri S, Cauley JA, Chasman DI, Clark GR, Cummings SR, Danoy P, Dennison EM, Eastell R, Eisman JA, Gudnason V, Hofman A, Jackson RD, Jones G, Jukema JW, Khaw KT, Lehtimäki T, Liu Y, Lorentzon M, McCloskey E, Mitchell BD, Nandakumar K, Nicholson GC, Oostra BA, Peacock M, Pols HA, Prince RL, Raitakari O, Reid IR, Robbins J, Sambrook PN, Sham PC, Shuldiner AR, Tylavsky FA, van Duijn C, Wareham NJ, Cupples LA, Econs MJ, Evans DM, Harris TB, Kung AW, Psaty BM, Reeve J, Spector TD, Streeten EA, Zillikens MC, Thorsteinsdottir U, Ohlsson C, Karasik D, Richards JB, Brown MA, Stefansson K, Uitterlinden AG, Ralston SH, Ioannidis JP, Kiel DP, Rivadeneira F (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501

    Article  CAS  Google Scholar 

  9. Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ, Dahia CL, Park-Min KH, Tobias JH, Kooperberg C, Kleinman A, Styrkarsdottir U, Liu CT, Uggla C, Evans DS, Nielson CM, Walter K, Pettersson-Kymmer U, McCarthy S, Eriksson J, Kwan T, Jhamai M, Trajanoska K, Memari Y, Min J, Huang J, Danecek P, Wilmot B, Li R, Chou WC, Mokry LE, Moayyeri A, Claussnitzer M, Cheng CH, Cheung W, Medina-Gómez C, Ge B, Chen SH, Choi K, Oei L, Fraser J, Kraaij R, Hibbs MA, Gregson CL, Paquette D, Hofman A, Wibom C, Tranah GJ, Marshall M, Gardiner BB, Cremin K, Auer P, Hsu L, Ring S, Tung JY, Thorleifsson G, Enneman AW, van Schoor N, de Groot LC, van der Velde N, Melin B, Kemp JP, Christiansen C, Sayers A, Zhou Y, Calderari S, van Rooij J, Carlson C, Peters U, Berlivet S, Dostie J, Uitterlinden AG, Williams SR, Farber C, Grinberg D, LaCroix A, Haessler J, Chasman DI, Giulianini F, Rose LM, Ridker PM, Eisman JA, Nguyen TV, Center JR, Nogues X, Garcia-Giralt N, Launer LL, Gudnason V, Mellström D, Vandenput L, Amin N, van Duijn C, Karlsson MK, Ljunggren Ö, Svensson O, Hallmans G, Rousseau F, Giroux S, Bussière J, Arp PP, Koromani F, Prince RL, Lewis JR, Langdahl BL, Hermann AP, Jensen JE, Kaptoge S, Khaw KT, Reeve J, Formosa MM, Xuereb-Anastasi A, Åkesson K, McGuigan F, Garg G, Olmos JM, Zarrabeitia MT, Riancho JA, Ralston SH, Alonso N, Jiang X, Goltzman D, Pastinen T, Grundberg E, Gauguier D, Orwoll ES, Karasik D, Davey-Smith G, AOGC Consortium, Smith AV, Siggeirsdottir K, Harris TB, Zillikens MC, van Meurs J, Thorsteinsdottir U, Maurano MT, Timpson NJ, Soranzo N, Durbin R, Wilson SG, Ntzani EE, Brown MA, Stefansson K, Hinds DA, Spector T, Cupples LA, Ohlsson C, Greenwood CM, UK10K Consortium, Jackson RD, Rowe DW, Loomis CA, Evans DM, Ackert-Bicknell CL, Joyner AL, Duncan EL, Kiel DP, Rivadeneira F, Richards JB (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526:112–117

    Article  CAS  Google Scholar 

  10. Kim SK (2018) Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS One 13:e0200785

    Article  Google Scholar 

  11. Richards JB, Rivadeneira F, Inouye M et al (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet (London, England) 371:1505–1512

    Article  CAS  Google Scholar 

  12. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365

    Article  CAS  Google Scholar 

  13. Ho-Le TP, Center JR, Eisman JA, Nguyen HT, Nguyen TV (2017) Prediction of bone mineral density and fragility fracture by genetic profiling. J Bone Miner Res 32:285–293

  14. Eriksson J, Evans DS, Nielson CM et al (2015) Limited clinical utility of a genetic risk score for the prediction of fracture risk in elderly subjects. J Bone Miner Res 30:184–194

  15. Mitchell JA, Chesi A, Elci O et al (2016) Genetic risk scores implicated in adult bone fragility associate with pediatric bone density. J Bone Miner Res 31:789–795

  16. Pencina MJ, D’Agostino RB Sr (2015) Evaluating discrimination of risk prediction models: the C statistic. Jama 314:1063–1064

    Article  CAS  Google Scholar 

  17. Nguyen TV, Center JR, Eisman JA (2013) Individualized fracture risk assessment: progresses and challenges. Curr Opin Rheumatol 25:532–541

    Article  Google Scholar 

  18. Hilden J, Habbema JD, Bjerregaard B (1978) The measurement of performance in probabilistic diagnosis. II Trustworthiness of the exact values of the diagnostic probabilities. Method Inform Med 17:227–237

  19. Fenlon C, O’Grady L, Doherty ML, Dunnion J (2018) A discussion of calibration techniques for evaluating binary and categorical predictive models. Prev Vet Med 149:107–114

    Article  Google Scholar 

  20. Vickers AJ, Elkin EB (2006) Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 26:565–574

  21. Vickers AJ, Cronin AM, Elkin EB, Gonen M (2008) Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak 8:53

    Article  Google Scholar 

  22. Vickers AJ, Van Calster B, Steyerberg EW (2016) Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 352

  23. Vickers AJ, van Calster B, Steyerberg EW (2019) A simple, step-by-step guide to interpreting decision curve analysis. Diagn Progn Res 3:18

    Article  Google Scholar 

  24. Barbieri CE, Cha EK, Chromecki TF et al (2011) Decision curve analysis assessing the clinical benefit of NMP22 in the detection of bladder cancer: secondary analysis of a prospective trial. BJU Int 109:685–690

    Article  Google Scholar 

  25. Vickers AJ, Cronin AM, Kattan MW, Gonen M, Scardino PT, Milowsky MI, Dalbagni G, Bochner BH (2009) Clinical benefits of a multivariate prediction model for bladder cancer: a decision analytic approach. Cancer 115:5460–5469

    Article  Google Scholar 

  26. Ishioka J, Saito K, Sakura M et al (2012) Development of a nomogram incorporating serum C-reactive protein level to predict overall survival of patients with advanced urothelial carcinoma and its evaluation by decision curve analysis. Br J Cancer 107:1031

    Article  CAS  Google Scholar 

  27. Nguyen T, Sambrook P, Kelly P, Jones G, Lord S, Freund J, Eisman J (1993) Prediction of osteoporotic fractures by postural instability and bone density. BMJ Br Med J 307:1111–1115

    Article  CAS  Google Scholar 

  28. Simons LA, McCallum J, Simons J, Powell I, Ruys J, Heller R, Lerba C (1990) The Dubbo study: an Australian prospective community study of the health of elderly. Aust NZ J Med 20:783–789

    Article  CAS  Google Scholar 

  29. Nguyen TV, Sambrook PN, Eisman JA (1997) Sources of variability in bone mineral density measurements: implications for study design and analysis of bone loss. J Bone Miner Res 12:124–135

    Article  CAS  Google Scholar 

  30. Nguyen TV, Sambrook PN, Eisman JA (1997) Sources of variability in bone mineral density measurements: implications for study design and analysis of bone loss. J Bone Miner Res12:124–135

  31. Henry MJ, Pasco JA, Pocock NA, Nicholson GC, Kotowicz MA (2004) Reference ranges for bone densitometers adopted Australia-wide: Geelong osteoporosis study. Australas Radiol 48:473–475

    Article  CAS  Google Scholar 

  32. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097

    Article  CAS  Google Scholar 

  33. Browning BL, Browning SR (2013) Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194:459–471

    Article  Google Scholar 

  34. Van Calster B, Wynants L, Verbeek JFM, Verbakel JY, Christodoulou E, Vickers AJ, Roobol MJ, Steyerberg EW (2018) Reporting and interpreting decision curve analysis: a guide for investigators. Eur Urol 74:796–804

    Article  Google Scholar 

  35. Fujiwara S, Nakamura T, Orimo H, Hosoi T, Gorai I, Oden A, Johansson H, Kanis JA (2008) Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX). Osteoporosis Int 19:429–435

  36. Gluszko P, Lorenc RS, Karczmarewicz E, Misiorowski W, Jaworski M (2014) Polish guidelines for the diagnosis and management of osteoporosis: a review of 2013 update. Pol Arch Med Wewn 124:255–263

    PubMed  Google Scholar 

  37. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381

    Article  CAS  Google Scholar 

  38. Baker SG, Schuit E, Steyerberg EW, Pencina MJ, Vickers A, Moons KGM, Mol BWJ, Lindeman KS (2014) How to interpret a small increase in AUC with an additional risk prediction marker: decision analysis comes through. Stat Med 33:3946–3959

    Article  Google Scholar 

  39. Baker SG, Kramer BS (2015) Evaluating prognostic markers using relative utility curves and test tradeoffs. Int J Clin Oncol 33:2578–2580

  40. Baker SG, Van Calster B, Steyerberg EW (2012) Evaluating a new marker for risk prediction using the test tradeoff: an update. Int J Biostat 8(1). https://doi.org/10.1515/1557-4679.1395

  41. R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org. Accessed 23/4/2007

Download references

Acknowledgements

The authors gratefully acknowledge the expert assistance of Janet Watters, Donna Reeves, Shaye Field, and Jodie Rattey in the interview, data collection, and measurement of bone densitometry, and the invaluable help of the Dubbo Base Hospital radiology staff, PRP Radiology, and Orana radiology. We thank the IT group of the Garvan Institute of Medical Research for help in managing the data. This work was partly supported by the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Nguyen.

Ethics declarations

St Vincent’s Campus Research Ethics Committee approved the study protocol, and written informed consent was obtained from every participant.

Conflicts of interest

Professor John A. Eisman has served as consultant on Scientific Advisory Boards for Amgen, Eli Lilly, Merck Sharp & Dohme, Novartis, Sanofi-Aventis, Servier, and deCode. Professor J.R. Center has given educational talks for and received travel expenses from Amgen, Merck Sharp & Dohme, Novartis, and Sanofi-Aventis. She has received travel expenses from Merck Sharp & Dohme, Amgen, and Aspen. Professor Tuan V. Nguyen has received honoraria for consulting and speaking in symposia sponsored by Merck Sharp & Dohme, Roche, Sanofi-Aventis, Novartis, and Bridge Healthcare Pty Ltd. (Vietnam). Professor J. A. Eisman, Professor T. V. Nguyen, and Professor J. R. Center have received grants from Sanofi and BUPA. Professor T. V. Nguyen has received an NHMRC project grant. Thao P. Ho-Le received the Christine & T. Jack Martin Research travel grant from AMGEN and Australian and New Zealand Bone and Mineral Society. Other authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

ESM 2

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho-Le, T.P., Tran, H.T.T., Center, J.R. et al. Assessing the clinical utility of genetic profiling in fracture risk prediction: a decision curve analysis. Osteoporos Int 32, 271–280 (2021). https://doi.org/10.1007/s00198-020-05403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05403-2

Keywords

Navigation