Skip to main content

Advertisement

Log in

The associations between the changes in serum inflammatory markers and bone mineral accrual in boys with overweight and obesity during pubertal maturation: a 3-year longitudinal study in Estonian boys

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Adipose tissue produces different inflammatory cytokines which compromise bone mineral accrual during puberty. Vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), interleukin (IL)-8, and interferon-gamma (IFN-γ) are significantly related to bone mineral accrual during pubertal maturation in boys with different BMI values.

Introduction

This longitudinal study aims to identify the inflammatory markers that most strongly associate with pubertal bone mineral density (BMD) increment in boys with overweight and obesity (OWB).

Methods

Twenty-six OWB and 29 normal-weight boys were followed yearly for 3 years to measure changes in 12 serum inflammatory markers, BMD (by DXA), and apparent volumetric BMD. The OWB group was further divided into two subgroups according to their BMI gain during the 3-year period. Data through time points presented as slopes were used to calculate correlation coefficients to explore the possible relationships between variables of interest. In the whole study group, linear mixed effects (LME) models were also used.

Results

Increment in serum VEGF concentration was inversely associated with an increase in total body (TB) BMD (r = − 0.82, P = 0.02) and TB bone mineral content (BMC)/height (r = − 0.82, P = 0.02) in those OWB whose BMI gain was higher during pubertal years. In the whole study group, the LME model confirmed the inverse association between VEGF and TB BMC/height (P < 0.05). EGF was inversely associated with LS BMD and LS BMAD (P < 0.05), whereas there was a positive association between IL-8 and TB BMAD and between IFN-γ and LS BMD (P < 0.05).

Conclusions

Lower increment in BMD in OWB with higher BMI gain is associated with increasing serum VEGF concentration during pubertal maturation. VEGF, EGF, IL-8, and IFN-γ are significantly associated with BMD during pubertal maturation in boys with different BMI values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Leonibus C, Marcovecchio ML, Chiavaroli V, de Giorgis T, Chiarelli F, Mohn A (2013) Timing of puberty and physical growth in obese children: a longitudinal study in boys and girls. Pediatr Obes 9(4):292–299. https://doi.org/10.1111/j.2047-6310.2013.00176.x

    Article  PubMed  Google Scholar 

  2. Palermo A, Tuccinardi D, Defeudis G, Watanabe M, D’Onofrio L, Lauria Pantano A, Napoli N, Pozzilli P, Manfrini S (2016) BMI and BMD: the potential interplay between obesity and bone fragility. Int J Envrion Res Public Health 13(6): pii:E544. doi: https://doi.org/10.3390/ijerph13060544

  3. Reinehr T, Roth CL (2010) A new link between skeleton, obesity and insulin resistance: relationships between osteocalcin, leptin and insulin resistance in obese children before and after weight loss. Int J Obes 34(5):852–858. https://doi.org/10.1038/ijo.2009.282

    Article  CAS  Google Scholar 

  4. Dimitri P, Bishop N, Walsh JS, Eastell R (2012) Obesity is risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone 50(2):457–466. https://doi.org/10.1016/j.bone.2011.05.011

    Article  PubMed  CAS  Google Scholar 

  5. Utsal L, Tillmann V, Zilmer M, Mäestu J, Purge P, Saar M, Lätt E, Jürimäe T, Maasalu K, Jürimäe J (2014) Serum interferon gamma concentration is associated with bone mineral density in overweight boys. J Endocrinol Investig 37(2):175–180. https://doi.org/10.1007/s40618-013-0029-6

    Article  CAS  Google Scholar 

  6. Yilmaz D, Ersoy B, Bilgin E, Gümüşer G, Onur E et al (2005) Bone mineral density in girls and boys at different pubertal stages: relation with gonadal steroids, bone formation markers, and growth parameters. J Bone Miner Metab 23(6):476–482. https://doi.org/10.1007/s00774-005-0631-6

  7. Dimitri P, Jacques RM, Paggiosi M, King D, Walsh J, Taylor ZA, Frangi AF, Bishop N, Eastell R (2015) Leptin may play a role in bone microstructural alterations in obese children. J Clin Endocrinol Metab 100(2):594–602. https://doi.org/10.1210/jc.2014-3199

    Article  PubMed  CAS  Google Scholar 

  8. Ivuskans A, Lätt E, Mäestu J, Saar M, Purge P, Maasalu K, Jürimäe T, Jürimäe J (2013) Bone mineral density in 11-13-year-old boys: relative importance of the weight status and body composition factors. Rheumatol Int 33(7):1681–1687. https://doi.org/10.1007/s00296-012-2612-0

    Article  PubMed  Google Scholar 

  9. Gracia-Marco L, Ortega FB, Jiménez-Pavón D, Rodríguez G, Castillo MJ, Vicente-Rodríguez G, Moreno LA (2012) Adiposity and bone health in Spanish adolescents. The HELENA study. Osteoporos Int 23(3):937–947. https://doi.org/10.1007/s00198-011-1649-3

    Article  PubMed  CAS  Google Scholar 

  10. Mengel E, Tillmann V, Remmel L, Kool P, Purge P, Lätt E, Jürimäe J (2017) Extensive BMI gain in puberty is associated with lower increments in bone mineral density in Estonian boys with overweight and obesity: a 3-year longitudinal study. Calcif Tissue Int 101(2):174–181. https://doi.org/10.1007/s00223-017-0273-4

    Article  PubMed  CAS  Google Scholar 

  11. Farr JN, Dimitri P (2017) The impact of fat and obesity on bone microarchitecture and strength in children. Calcif Tissue Int 100(5):500–513. https://doi.org/10.1007/s00223-016-0218-3

    Article  PubMed  CAS  Google Scholar 

  12. González-Gil E, Gracia-Marco L, Santabárbara J, Molnar D, Amaro Gahete FJ et al (2017) Inflammation and insulin resistance according to body composition in European adolescents: the HELENA study. Nutr Hosp 34(5):1033–1043. https://doi.org/10.20960/nh.747

    Article  PubMed  Google Scholar 

  13. Hanks LJ, Casazza K, Alvarez JA, Fernandez JR (2010) Does fat fuel the fire: independent and interactive effects of genetic, physiological, and environmental factors on variations in fat deposition and distribution across populations. J Pediatr Endocrinol Metab 23(12):1233–1244

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schett G (2011) Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur J Clin Investig 41(12):1361–1366. https://doi.org/10.1111/j.1365-2362.2011.02545.x

    Article  CAS  Google Scholar 

  15. Iwaniec UT, Turner RT (2016) Influence of body weight on bone mass, architecture and turnover. J Endocrinol 230(3):R115–R130. https://doi.org/10.1530/JOE-16-0089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ding C, Parameswaran V, Udayan R, Burgess J, Jones G (2008) Circulating levels of inflammatory markers predict change in bone mineral density and resorption in older adults: a longitudinal study. J Clin Endocrinol Metab 93(5):1952–1958. https://doi.org/10.1210/jc.2007-2325

    Article  PubMed  CAS  Google Scholar 

  17. Tam CS, Garnett SP, Cowell CT, Heilbronn LK, Lee JW, Wong M, Baur LA (2010) IL-6, IL-8 and IL-10 levels in healthy weight and overweight children. Horm Res Paediatr 73(2):128–134. https://doi.org/10.1159/000277632

    Article  PubMed  CAS  Google Scholar 

  18. Magrone T, Jirillo E (2015) Childhood obesity: immune response and nutritional approaches. Front Immunol 6(76). doi:https://doi.org/10.3389/fimmu.2015.00076.

  19. Morimoto Y, Conroy SM, Ollberding NJ, Kim Y, Lim U, Cooney RV, Franke AA, Wilkens LR, Hernandez BY, Goodman MT, Henderson BE, Kolonel LN, le Marchand L, Maskarinec G (2014) Ethnic differences in serum adipokine and C-reactive protein levels: the Multiethnic Cohort. Int J Obes 38(11):1416–1422. https://doi.org/10.1038/ijo.2014.25

    Article  CAS  Google Scholar 

  20. Azizieh F, Raghupathy R, Shebab D, Al-Jarallah K, Gupta R (2017) Cytokine profiles in osteoporosis sugest a proresorptive bias. Menopause 24:1057–1064. https://doi.org/10.1097/GME.0000000000000885

    Article  PubMed  Google Scholar 

  21. Senel K, Baykal T, Seferoglu B, Altas EU, Baygutalp F, Ugur M, Kiziltunc A (2013) Circulating vascular endothelial growth factor concentrations in patients with postmenopausal osteoporosis. Arch Med Sci 9(4):709–712. https://doi.org/10.5114/aoms.2013.36896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mengel E, Tillmann V, Remmel L, Kool P, Purge P, Lätt E, Jürimäe J (2017) Changes in inflammatory markers in Estonian pubertal boys with different BMI values and increments: a 3-year follow-up study. Obesity (Silver Spring) 25(3):600–607. https://doi.org/10.1002/oby.21756

    Article  CAS  Google Scholar 

  23. Eesti KMI kõverad (Estonian BMI charts). http://kliinikum.ee/lastekliinik/eesti-kmi-koverad (accessed 01.06.2017)

  24. Matsudo SMM, Matsudo VKR (1994) Self-assessment and physician assessment of sexual maturation in Brazilian boys and girls: concordance and reproducibility. Am J Hum Biol 6(4):451–455. https://doi.org/10.1002/ajhb.1310060406

    Article  PubMed  Google Scholar 

  25. Cheng J, Lloyd JE, Maldonado-Molina MM, Komro KA, Muller KE (2010) Real longitudinal data analysis for real people: building a good enough mixed model. Stat Med 29:504–520. https://doi.org/10.1002/sim.3775.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57(1):289–300 URL http://www.jstor.org/stable/2346101

    Google Scholar 

  27. Glickman ME, Rao SR, Schultz MR (2014) False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol 67(8):850–857. https://doi.org/10.1016/j.jclinepi.2014.03.012

    Article  PubMed  Google Scholar 

  28. Liu Y, Berendsen AD, Jia S, Lotinun S, Baron R, Ferrera N et al (2012) Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest 122(9):3101–3113. https://doi.org/10.1172/JCI61209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Costa N, Paramanathan S, Mac Donald D, Wierzbicki AS, Hampson C (2009) Factors regulating circulating vascular endothelial growth factor (VEGF): association with bone mineral density (BMD) in post- menopausal osteoporosis. Cytokine 46(3):376–381. https://doi.org/10.1016/j.cyto.2009.03.012

    Article  PubMed  CAS  Google Scholar 

  30. Mazidi M, Rezaie P, Kengne AP, Stathopoulou MG, Azimi-Nezhad M, Siest S (2017) VEGF, the underlying factor for metabolic syndrome; fact or fiction? Diab Metab Syndr Suppl 1:S61–S64. https://doi.org/10.1016/j.dsx.2016.12.004

    Article  Google Scholar 

  31. Loebig M, Klement J, Schmoller A, Betz S, Heuck N, Schweiger U, Peters A, Schultes B, Oltmanns KM (2010) Evidence for a relationship between VEGF and BMI independent of insulin sensitivity by glucose clamp procedure in a homogenous group healthy young men. PLoS One 5(9):e12610. https://doi.org/10.1371/journal.pone.0012610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zabaleta J, Velasco-Gonzalez C, Estrada J, Ravussin E, Pelligrino N, Mohler MC, Larson-Meyer E, Boulares AH, Powell-Young Y, Bennett B, Happel K, Cefalu W, Scribner R, Tseng TS, Sothern M (2014) Inverse correlation of serum inflammatory markers with metabolic parameters in healthy, Black and White prepubertal youth. Int J Obes 38(4):563–568. https://doi.org/10.1038/ijo.2013.220

    Article  CAS  Google Scholar 

  33. Balagopal PB, de Ferranti SD, Cook S, Daniels SR, Gidding SS, Hayman LL, McCrindle BW, Mietus-Snyder ML, Steinberger J, on behalf of the American Heart Association Committee on Atherosclerosis, Hypertension and Obesity in Youth of the Council on Cardiovascular Disease in the Young, Council on Nutrition, Physical Activity and Metabolism, and Council on Epidemiology and Prevention (2011) Nontraditional risk factors and biomarkers for cardiovascular disease: mechanistic, research, and clinical considerations for youth: a scientific statement from the American Heart Association. Circulation 123(23):2749–2769. https://doi.org/10.1161/CIR.0b013e31821c7c64

    Article  PubMed  Google Scholar 

  34. De Benedetti F, Rucci N, Del Fattore A, Peruzzi B, Paro R, Longo M et al (2006) Impaired skeletal development in interleukin-6–transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum 54(11):3551–3563

    Article  PubMed  CAS  Google Scholar 

  35. Xian CJ (2007) Roles of epidermal growth factor family in the regulation of postnatal somatic growth. Endocr Rev 28(3):284–296. https://doi.org/10.1210/er.2006-0049

    Article  PubMed  CAS  Google Scholar 

  36. Serrero G, Mills D (1991) Physiological role of epidermal growth factor on adipose tissue development in vivo. Proc Natl Acad Sci U S A 88(9):3912–3916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Miller JA, Thompson PA, Hakim IA, Lopez AM, Thomson CA, Hsu CH, Chow HHS (2013) Expression of epidermal growth factor, transforming growth factor-β1 and adiponectin in nipple aspirate fluid and plasma of pre and post-menopausal women. Biomark Res 1:18. https://doi.org/10.1186/2050-7771-1-18

    Article  PubMed  PubMed Central  Google Scholar 

  38. Accattato F, Greco M, Pullano SA, Carè I, Fiorillo AS, Pujia A, Montalcini T, Foti DP, Brunetti A, Gulletta E (2017) Effects of acute physical exercise on oxidative stress and inflammatory status in young, sedentary obese subjects. PLoS One 12(6):e0178900. https://doi.org/10.1371/journal.pone.0178900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Schipper HS, Nuboer R, Prop S, van den Ham HJ, de Boer FK, Kesmir C, Mombers IMH, van Bekkum KA, Woudstra J, Kieft JH, Hoefer IE, de Jager W, Prakken B, van Summeren M, Kalkhoven E (2012) Systemic inflammation in childhood obesity: circulating inflammatory mediators and activated CD14++ monocytes. Diabetologia 55(10):2800–2810. https://doi.org/10.1007/s00125-012-2641-y

    Article  PubMed  CAS  Google Scholar 

  40. Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J (2018) Regulation of osteoclast differentiation by cytokine networks. Immune Netw 18(1):e8. https://doi.org/10.4110/10.2018.18.e8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Todoric J, Strobl B, Jais A, Boucheron N, Bayer M, Amann S, Lindroos J, Teperino R, Prager G, Bilban M, Ellmeier W, Krempler F, Muller M, Wagner O, Patsch W, Pospisilik JA, Esterbauer H (2011) Cross-talk between interferon-γ and hedgehog signaling regulates adipogenesis. Diab 60(6):1668–1676. https://doi.org/10.2337/db10-1628

    Article  CAS  Google Scholar 

  42. Sinnesael M, Boonen S, Claessens F, Gielen E, Vanderschueren D (2011) Testosterone and the male skeleton: a dual mode of action. J Osteoporos 2011:240328. https://doi.org/10.4061/2011/240328 1, 7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK et al (2009) Bone structure at the distal radius during adolescent growth. J Bone Miner Res 24(6):1033–1042. https://doi.org/10.1359/jbmr.081255

    Article  PubMed  Google Scholar 

  44. Mosca LN, Goldberg TB, da Silva VN, da Silva CC, Kurokawa CS, Bisi Rizzo AC, Corrente JE (2014) Excess body fat negatively affects bone mass in adolescents. Nutrition 30(7–8):847–852. https://doi.org/10.1016/j.nut.2013.12.003

    Article  PubMed  Google Scholar 

  45. Chan PE, Sung RY, Kong AP, Goggins WB, So HK, Nelson EA (2008) Reliability of pubertal self-assessment in Hong Kong Chinese children. J Paediatr Child Health 44(6):353–358. https://doi.org/10.1111/j.1440-1754.2008.01311.x

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Estonian Ministry of Education and Research grant IUT 20-58 and by Estonian Research Council grant PUT 1382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mengel.

Ethics declarations

Conflicts of interest

None.

Informed consent statement

The study was approved by the Research Ethics Committee of the University of Tartu, Tartu, Estonia. Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(PDF 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengel, E., Tillmann, V., Remmel, L. et al. The associations between the changes in serum inflammatory markers and bone mineral accrual in boys with overweight and obesity during pubertal maturation: a 3-year longitudinal study in Estonian boys. Osteoporos Int 29, 2069–2078 (2018). https://doi.org/10.1007/s00198-018-4580-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-4580-z

Keywords

Navigation