Skip to main content

Advertisement

Log in

Surgery alters parameters of vitamin D status and other laboratory results

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Fracture liaison services often perform laboratory testing, but these results may be altered by surgery. In 40 hip arthroplasty patients, many laboratory parameters of bone health relevance were reduced by 8–22% on the first post-operative day. Laboratory results obtained in the immediate post-surgery interval do not reliably ascertain baseline status.

Introduction

As secondary causes of osteoporosis are common, fracture liaison services often perform laboratory testing in the immediate post-fracture interval. We hypothesized that laboratory results obtained shortly after surgery may not accurately ascertain baseline status. If true, such alterations might confound subsequent fracture prevention efforts.

Methods

Patients undergoing elective total hip arthroplasty were studied as a surrogate for hip fracture patients. Blood and urine were obtained 2 weeks before surgery, before anesthetic induction, on post-operative day one, and 6 weeks after surgery. Serum total and free 25-hydroxyvitamin D (25(OH)D), vitamin D-binding protein (DBP), calcium, creatinine, albumin (Alb), alkaline phosphatase (ALP), plasma hemoglobin (Hgb) and urinary DBP/creatinine ratio (UDBP/Cr) were measured.

Results

Forty volunteers (28 women; 12 men) with mean age of 65.7 [8.7] years were studied. Laboratory results were stable from 2 weeks before to the day of surgery. On the first day after surgery, total 25(OH)D, DBP, calcium, creatinine, ALP, and Alb declined 8–22% (p < 0.0001); free 25(OH)D and Hgb declined by 8 and 15% (p < 0.01), respectively; and UDBP/Cr increased 32% (p < 0.01). Using a 25(OH)D <30 ng/mL threshold, vitamin D inadequacy prevalence increased from 38% before surgery to 68% the day after (p < 0.001). All laboratory values returned to baseline at 6 weeks after surgery.

Conclusions

Laboratory values are reduced immediately following elective total hip arthroplasty. Testing at that time does not accurately ascertain baseline status and may lead to elevated estimates of vitamin D inadequacy, incorrect interventions, and misallocation of healthcare resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anonymous (2001) Osteoporosis prevention, diagnosis and therapy NIH consensus development panel on osteoporosis prevention, diagnosis and therapy. J Am Med Assoc 285:785–795

    Article  Google Scholar 

  2. Leslie WD, Morin SN (2014) Osteoporosis epidemiology 2013: implications for diagnosis, risk assessment, and treatment. Curr Opin Rheumatol 26:440–446

    Article  PubMed  CAS  Google Scholar 

  3. Sattui SE, Saag KG (2014) Fracture mortality: associations with epidemiology and osteoporosis treatment. Nat Rev Endocrinol 10:592–602

    Article  PubMed  Google Scholar 

  4. Si L, Winzenberg TM, de Graaff B, Palmer AJ (2014) A systematic review and meta-analysis of utility-based quality of life for osteoporosis-related conditions. Osteoporos Int 25:1987–1997

    Article  PubMed  CAS  Google Scholar 

  5. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. Arch Osteoporos 8:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kanis JA, Johnell O, De Laet C et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382

    Article  PubMed  CAS  Google Scholar 

  7. Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jonsson B (2004) Fracture risk following an osteoporotic fracture. Osteoporos Int 15:175–179

    Article  PubMed  CAS  Google Scholar 

  8. Lyles KW, Colon-Emeric CS, Magaziner JS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357:1799–1809

    Article  PubMed  CAS  Google Scholar 

  9. Cummings SR, San Martin J, McClung MR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. [Erratum appears in N Engl J Med. 2009 Nov 5;361(19):1914] N Engl J Med 361:756–765

    Article  PubMed  CAS  Google Scholar 

  10. Solomon DH, Johnston SS, Boytsov NN, McMorrow D, Lane JM, Krohn KD (2014) Osteoporosis medication use after hip fracture in U.S. patients between 2002 and 2011. J Bone Miner Res 29:1929–1937

    Article  PubMed  PubMed Central  Google Scholar 

  11. Akesson K, Marsh D, Mitchell PJ, McLellan AR, Stenmark J, Pierroz DD, Kyer C, Cooper C (2013) Capture the fracture: a best practice framework and global campaign to break the fragility fracture cycle. Osteoporos Int 24:2135–2152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Eisman JA, Bogoch ER, Dell R, Harrington JT, McKinney RE, McLellan A, Mitchel PJ, Silverman S, Singleton R, Siris E (2012) Making the first fracture the last fracture: ASBMR task force report on secondary fracture prevention. J Bone Miner Res 27:2039–2046

    Article  PubMed  Google Scholar 

  13. Miller AN, Lake AF, Emory CL (2015) Establishing a fracture liaison service: an orthopaedic approach. J Bone Joint Surg Am 97:675–681

    Article  PubMed  Google Scholar 

  14. Dell R, Greene D, Schelkun SR, Williams K (2008) Osteoporosis disease management: the role of the orthopaedic surgeon. J Bone Joint Surg 90(suppl 4):188–194

    Article  PubMed  Google Scholar 

  15. Mirza F, Canalis E (2015) Management of endocrine disease: secondary osteoporosis: pathophysiology and management. Eur J Endocrinol 173:R131–R151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bogoch ER, Elliot-Gibson V, Wang RY, Josse RG (2012) Secondary causes of osteoporosis in fracture patients. J Orthop Trauma 26:e145–e152

    Article  PubMed  Google Scholar 

  17. Commission TJ (2013) Osteoporosis-Associated Fracture Implemention Guide. The Joint Commission, Online, http://www.jointcommission.org/assets/1/6/Osteoporosis_Imp_Guide.pdf

  18. Louw JA, Werbeck A, Louw ME, Kotze TJ, Cooper R, Labadarios D (1992) Blood vitamin concentrations during the acute-phase response. Crit Care Med 20:934–941

    Article  PubMed  CAS  Google Scholar 

  19. Navarro LH, Bloomstone JA, Auler JO Jr et al (2015) Perioperative fluid therapy: a statement from the international Fluid Optimization Group. Perioperative medicine (London, England) 4:3

    Article  Google Scholar 

  20. Schricker T, Lattermann R (2015) Perioperative catabolism. Can J Anaesth 62:182–193

    Article  PubMed  Google Scholar 

  21. Lensmeyer GL, Wiebe DA, Binkley N, Drezner MK (2006) HPLC method for 25-hydroxyvitamin D measurement: comparison with contemporary assays. Clin Chem 52:1120–1126

    Article  PubMed  CAS  Google Scholar 

  22. Binkley N, Sempos CT (2014) Standardizing vitamin D assays: the way forward. J Bone Miner Res 29:1709–1714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. LeBoff MS, Kohlmeier L, Hurwitz S, Franklin J, Wright J, Glowacki J (1999) Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. J Am Med Assoc 281:1505–1511

    Article  CAS  Google Scholar 

  24. LeBoff MS, Hawkes WG, Glowacki J, Yu-Yahiro J, Hurwitz S, Magaziner J (2008) Vitamin D-deficiency and post-fracture changes in lower extremity function and falls in women with hip fractures. Osteoporos Int 19:1283–1290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Reid D, Toole BJ, Knox S, Talwar D, Harten J, O’Reilly DS, Blackwell S, Kinsella J, McMillan DC, Wallace AM (2011) The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am J Clin Nutr 93:1006–1011

    Article  PubMed  CAS  Google Scholar 

  26. Waldron JL, Ashby HL, Cornes MP, Bechervaise J, Razavi C, Thomas OL, Chugh S, Deshpande S, Ford C, Gama R (2013) Vitamin D: a negative acute phase reactant. J Clin Pathol 66:620–622

    Article  PubMed  CAS  Google Scholar 

  27. Schwartz JB, Lai J, Lizaola B, Kane L, Markova S, Weyland P, Terrault NA, Stotland N, Bikle D (2014) A comparison of measured and calculated free 25(OH) vitamin D levels in clinical populations. J Clin Endocrinol Metab 99:1631–1637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Henriksen VT, Rogers VE, Rasmussen GL, Trawick RH, Momberger NG, Aguirre D, Barker T (2014) Pro-inflammatory cytokines mediate the decrease in serum 25(OH)D concentrations after total knee arthroplasty? Med Hypotheses 82:134–137

    Article  PubMed  CAS  Google Scholar 

  29. Santonocito C, De Loecker I, Donadello K, Moussa MD, Markowicz S, Gullo A, Vincent JL (2014) C-reactive protein kinetics after major surgery. Anesth Analg 119:624–629

    Article  PubMed  CAS  Google Scholar 

  30. Barker T, Martins TB, Kjeldsberg CR, Trawick RH, Hill HR (2012) Circulating interferon-gamma correlates with 1,25(OH)D and the 1,25(OH)D-to-25(OH)D ratio. Cytokine 60:23–26

    Article  PubMed  CAS  Google Scholar 

  31. Bertoldo F, Pancheri S, Zenari S, Boldini S, Giovanazzi B, Zanatta M, Valenti MT, Dalle Carbonare L, Lo Cascio V (2010) Serum 25-hydroxyvitamin D levels modulate the acute-phase response associated with the first nitrogen-containing bisphosphonate infusion. J Bone Miner Res 25:447–454

    Article  PubMed  CAS  Google Scholar 

  32. Newens K, Filteau S, Tomkins A (2006) Plasma 25-hydroxyvitamin D does not vary over the course of a malarial infection. Trans R Soc Trop Med Hyg 100:41–44

    Article  PubMed  CAS  Google Scholar 

  33. Barth JH, Field HP, Mather AN, Plein S (2012) Serum 25 hydroxy-vitamin D does not exhibit an acute phase reaction after acute myocardial infarction. Ann Clin Biochem 49:399–401

    Article  PubMed  CAS  Google Scholar 

  34. Bang UC, Novovic S, Andersen AM, Fenger M, Hansen MB, Jensen JE (2011) Variations in serum 25-hydroxyvitamin D during acute pancreatitis: an exploratory longitudinal study. Endocr Res 36:135–141

    Article  PubMed  CAS  Google Scholar 

  35. Silva MC, Furlanetto TW (2015) Does serum 25-hydroxyvitamin D decrease during acute-phase response? A systematic review. Nutr Res 35:91–96

    Article  PubMed  CAS  Google Scholar 

  36. Iglar PJ, Hogan KJ (2015) Vitamin D status and surgical outcomes: a systematic review. Patient Saf Surg 9:14

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fakler JK, Grafe A, Dinger J, Josten C, Aust G (2016) Perioperative risk factors in patients with a femoral neck fracture - influence of 25-hydroxyvitamin D and C-reactive protein on postoperative medical complications and 1-year mortality. BMC Musculoskelet Disord 17:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Maier GS, Maus U, Lazovic D, Horas K, Roth KE, Kurth AA (2016) Is there an association between low serum 25-OH-D levels and the length of hospital stay in orthopaedic patients after arthroplasty?. J Orthop Traumatol

  39. Barker T, Martins TB, Hill HR, Kjeldsberg CR, Trawick RH, Weaver LK, Traber MG (2011) Low vitamin D impairs strength recovery after anterior cruciate ligament surgery. J Evid Based Complementary Altern Med 16:201–209

    Article  CAS  Google Scholar 

  40. Amrein K, Schnedl C, Holl A et al (2014) Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA 312:1520–1530

    Article  PubMed  CAS  Google Scholar 

  41. Przybelski R, Agrawal S, Krueger D, Engelke JA, Walbrun F, Binkley N (2008) Rapid correction of low vitamin D status in nursing home residents. Osteoporos Int 19:1621–1628

    Article  PubMed  CAS  Google Scholar 

  42. Ross AC, Manson JE, Abrams SA et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58

    Article  PubMed  CAS  Google Scholar 

  43. Holick MF, Binkley N, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 96:1911–1930

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Binkley.

Ethics declarations

This study was reviewed and approved by the University of Wisconsin Health Sciences Institutional Review Board.

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binkley, N., Coursin, D., Krueger, D. et al. Surgery alters parameters of vitamin D status and other laboratory results. Osteoporos Int 28, 1013–1020 (2017). https://doi.org/10.1007/s00198-016-3819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3819-9

Keywords

Navigation