Skip to main content

Advertisement

Log in

Wheelchair use and lipophilic statin medications may influence bone loss in chronic spinal cord injury: findings from the FRASCI-bone loss study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We identified a protective bone effect at the knee with lipophilic statin use in individuals with chronic spinal cord injury. Lipophilic statin users gained bone at the knee compared to non-users and wheelchair users lost bone compared to walkers. Ambulation and or statins may be effective osteogenic interventions in chronic spinal cord injury (SCI).

Introduction

SCI increases the risk of osteoporosis and low-impact fractures, particularly at the knee. However, during the chronic phase of SCI, the natural history and factors associated with longitudinal change in bone density remain poorly characterized. In this study, we prospectively assessed factors associated with change in bone density over a mean of 21 months in 152 men and women with chronic SCI.

Methods

A mixed model procedure with repeated measures was used to assess predictors of change in bone mineral density (PROC MIXED) at the distal femur and proximal tibia. Factors with a p value of <0.10 in the univariate mixed models, as well as factors that were deemed clinically significant (gender, age, and walking status), were assessed in multivariable models. Factors with a p value of ≤0.05 were included in the final model.

Results

We found no association between bone loss and traditional osteoporosis risk factors, including age, gender, body composition, or vitamin D level or status (normal or deficient). In both crude and fully adjusted models, wheelchair users lost bone compared to walkers. Similarly, statin users gained bone compared to nonusers.

Conclusions

The statin finding is supported by reports in the general population where statin use has been associated with a reduction in bone loss and fracture risk. Our results suggest that both walking and statins may be effective osteogenic therapies to mitigate bone loss and prevent osteoporosis in chronic SCI. Our findings also suggest that loss of mechanical loading and/or neuronal factors contribute more to disuse osteoporosis than traditional osteoporosis risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  1. National Spinal Cord InjuryStatistical C (2014) Spinal Cord Injury Facts and Figures at a Glance. J Spinal Cord Med 37:355–356

    Article  Google Scholar 

  2. Battaglino RA, Sudhakar S, Lazzari AA, Garshick E, Zafonte R, Morse LR (2012) Circulating sclerostin is elevated in short-term and reduced in long-term SCI. Bone 51:600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carbone LD, Chin AS, Burns SP, Svircev JN, Hoenig H, Heggeness M, Weaver F (2013) Morbidity following lower extremity fractures in men with spinal cord injury. Osteoporos Int 24:2261–2267

    Article  CAS  PubMed  Google Scholar 

  4. Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20:385–392

    Article  CAS  PubMed  Google Scholar 

  5. Morse LR, Giangregorio L, Battaglino RA, Holland R, Craven BC, Stolzmann KL, Lazzari AA, Sabharwal S, Garshick E (2009) VA-based survey of osteoporosis management in spinal cord injury. PM R 1:240–244

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Zhu LP, Yang XL, Huang HL, Ye DQ (2013) HMG-CoA reductase inhibitors (statins) and bone mineral density: a meta-analysis. Bone 54:151–156

    Article  CAS  PubMed  Google Scholar 

  7. Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY (2007) Effects of statins on bone mineral density: a meta-analysis of clinical studies. Bone 40:1581–1587

    Article  CAS  PubMed  Google Scholar 

  8. Doherty AL, Battaglino RA, Donovan J, Gagnon D, Lazzari AA, Garshick E, Zafonte R, Morse LR (2014) Adiponectin is a candidate biomarker of lower extremity bone density in men with chronic spinal cord injury. J Bone Miner Res 29:251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morse LR, Sudhakar S, Lazzari AA, Tun C, Garshick E, Zafonte R, Battaglino RA (2013) Sclerostin: a candidate biomarker of SCI-induced osteoporosis. Osteoporos Int 24:961–968

    Article  CAS  PubMed  Google Scholar 

  10. Morse LR, Lazzari AA, Battaglino R, Stolzmann KL, Matthess KR, Gagnon DR, Davis SA, Garshick E (2009) Dual energy x-ray absorptiometry of the distal femur may be more reliable than the proximal tibia in spinal cord injury. Arch Phys Med Rehabil 90:827–831

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tan CO, Battaglino RA, Doherty AL, Gupta R, Lazzari AA, Garshick E, Zafonte R, Morse LR (2014) Adiponectin is associated with bone strength and fracture history in paralyzed men with spinal cord injury. Osteoporos Int 25:2599–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morse LR, Sudhakar S, Danilack V, Tun C, Lazzari A, Gagnon DR, Garshick E, Battaglino RA (2012) Association between sclerostin and bone density in chronic spinal cord injury. J Bone Miner Res 27:352–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bleicher K, Cumming RG, Naganathan V, Seibel MJ, Sambrook PN, Blyth FM, Le Couteur DG, Handelsman DJ, Creasey HM, Waite LM (2011) Lifestyle factors, medications, and disease influence bone mineral density in older men: findings from the CHAMP study. Osteoporos Int 22:2421–2437

    Article  CAS  PubMed  Google Scholar 

  14. Montagnani A, Gonnelli S, Cepollaro C, Pacini S, Campagna MS, Franci MB, Lucani B, Gennari C (2003) Effect of simvastatin treatment on bone mineral density and bone turnover in hypercholesterolemic postmenopausal women: a 1-year longitudinal study. Bone 32:427–433

    Article  CAS  PubMed  Google Scholar 

  15. Rejnmark L, Buus NH, Vestergaard P, Heickendorff L, Andreasen F, Larsen ML, Mosekilde L (2004) Effects of simvastatin on bone turnover and BMD: a 1-year randomized controlled trial in postmenopausal osteopenic women. J Bone Miner Res 19:737–744

    Article  CAS  PubMed  Google Scholar 

  16. Ray WA, Daugherty JR, Griffin MR (2002) Lipid-lowering agents and the risk of hip fracture in a Medicaid population. Inj Prev 8:276–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCandless LC (2013) Statin use and fracture risk: can we quantify the healthy-user effect? Epidemiology 24:743–752

    Article  PubMed  Google Scholar 

  18. Edwards CJ, Hart DJ, Spector TD (2000) Oral statins and increased bone-mineral density in postmenopausal women. Lancet 355:2218–2219

    Article  CAS  PubMed  Google Scholar 

  19. Pasco JA, Kotowicz MA, Henry MJ, Sanders KM, Nicholson GC, Geelong Osteoporosis S (2002) Statin use, bone mineral density, and fracture risk: Geelong Osteoporosis Study. Arch Intern Med 162:537–540

    Article  CAS  PubMed  Google Scholar 

  20. Berthold HK, Unverdorben S, Zittermann A, Degenhardt R, Baumeister B, Unverdorben M, Krone W, Vetter H, Gouni-Berthold I (2004) Age-dependent effects of atorvastatin on biochemical bone turnover markers: a randomized controlled trial in postmenopausal women. Osteoporos Int 15:459–467

    Article  CAS  PubMed  Google Scholar 

  21. Lupattelli G, Scarponi AM, Vaudo G et al (2004) Simvastatin increases bone mineral density in hypercholesterolemic postmenopausal women. Metabolism 53:744–748

    Article  CAS  PubMed  Google Scholar 

  22. Rejnmark L, Vestergaard P, Mosekilde L (2006) Statin but not non-statin lipid-lowering drugs decrease fracture risk: a nation-wide case–control study. Calcif Tissue Int 79:27–36

    Article  CAS  PubMed  Google Scholar 

  23. Schoofs MW, Sturkenboom MC, van der Klift M, Hofman A, Pols HA, Stricker BH (2004) HMG-CoA reductase inhibitors and the risk of vertebral fracture. J Bone Miner Res 19:1525–1530

    Article  CAS  PubMed  Google Scholar 

  24. Ruan F, Zheng Q, Wang J (2012) Mechanisms of bone anabolism regulated by statins. Biosci Rep 32:511–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghosh-Choudhury N, Mandal CC, Choudhury GG (2007) Statin-induced Ras activation integrates the phosphatidylinositol 3-kinase signal to Akt and MAPK for bone morphogenetic protein-2 expression in osteoblast differentiation. J Biol Chem 282:4983–4993

    Article  CAS  PubMed  Google Scholar 

  26. Ohnaka K, Shimoda S, Nawata H, Shimokawa H, Kaibuchi K, Iwamoto Y, Takayanagi R (2001) Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem Biophys Res Commun 287:337–342

    Article  CAS  PubMed  Google Scholar 

  27. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G (1999) Stimulation of bone formation in vitro and in rodents by statins. Science 286:1946–1949

    Article  CAS  PubMed  Google Scholar 

  28. Cragg JJ, Noonan VK, Krassioukov A, Borisoff J (2013) Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology 81:723–728

    Article  PubMed  PubMed Central  Google Scholar 

  29. Flank P, Wahman K, Levi R, Fahlstrom M (2012) Prevalence of risk factors for cardiovascular disease stratified by body mass index categories in patients with wheelchair-dependent paraplegia after spinal cord injury. J Rehabil Med 44:440–443

    Article  PubMed  Google Scholar 

  30. Krum H, Howes LG, Brown DJ, Ungar G, Moore P, McNeil JJ, Louis WJ (1992) Risk factors for cardiovascular disease in chronic spinal cord injury patients. Paraplegia 30:381–388

    Article  CAS  PubMed  Google Scholar 

  31. Myers J, Lee M, Kiratli J (2007) Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 86:142–152

    Article  PubMed  Google Scholar 

  32. Wahman K, Nash MS, Westgren N, Lewis JE, Seiger A, Levi R (2010) Cardiovascular disease risk factors in persons with paraplegia: the Stockholm spinal cord injury study. J Rehabil Med 42:272–278

    Article  PubMed  Google Scholar 

  33. Wahman K, Nash MS, Lewis JE, Seiger A, Levi R (2010) Increased cardiovascular disease risk in Swedish persons with paraplegia: The Stockholm spinal cord injury study. J Rehabil Med 42:489–492

    Article  PubMed  Google Scholar 

  34. Wahman K, Nash MS, Lewis JE, Seiger A, Levi R (2011) Cardiovascular disease risk and the need for prevention after paraplegia determined by conventional multifactorial risk models: the Stockholm spinal cord injury study. J Rehabil Med 43:237–242

    Article  PubMed  Google Scholar 

  35. Sheng Z, Jia X, Kang M (2016) Statin use and risk of Parkinson's disease: A meta-analysis. Behav Brain Res 309:29–34

    Article  CAS  PubMed  Google Scholar 

  36. Silva T, Teixeira J, Remiao F, Borges F (2013) Alzheimer's disease, cholesterol, and statins: the junctions of important metabolic pathways. Angew Chem Int Ed Engl 52:1110–1121

    Article  CAS  PubMed  Google Scholar 

  37. Wong GK, Liang M, Tan H, Lee MW, Po YC, Chan KY, Poon WS (2013) High-dose simvastatin for aneurysmal subarachnoid hemorrhage: a multicenter, randomized, controlled, double-blind clinical trial protocol. Neurosurgery 72:840–844

    Article  PubMed  Google Scholar 

  38. Miedema I, Uyttenboogaart M, Luijckx GJ (2012) Statin use and lipid profile in relation to safety and functional outcome after thrombolysis in ischemic stroke. Expert Rev Neurother 12:907–910

    Article  CAS  PubMed  Google Scholar 

  39. Esposito E, Rinaldi B, Mazzon E, Donniacuo M, Impellizzeri D, Paterniti I, Capuano A, Bramanti P, Cuzzocrea S (2012) Anti-inflammatory effect of simvastatin in an experimental model of spinal cord trauma: involvement of PPAR-alpha. J Neuroinflammation 9:81

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Han X, Yang N, Cui Y, Xu Y, Dang G, Song C (2012) Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat. Neurosci Lett 521:136–141

    Article  CAS  PubMed  Google Scholar 

  41. Shunmugavel A, Martin MM, Khan M, Copay AG, Subach BR, Schuler TC, Singh I (2013) Simvastatin ameliorates cauda equina compression injury in a rat model of lumbar spinal stenosis. J Neuroimmune Pharmacol 8:274–286

    Article  PubMed  Google Scholar 

  42. Vestergaard P, Krogh K, Rejnmark L, Mosekilde L (1998) Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 36:790–796

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rachael Burns and Kara Loo, research assistants, Boston VA Healthcare System, for collection of anthropometric data, and Merilee Teylan, Boston VA Healthcare System, analyst, for assistance with data cleaning and database management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Morse.

Ethics declarations

Conflicts of interest

Leslie Morse, Nguyen Nguyen, Ricardo Battaglino, A J Guarino, David Gagnon, Ross Zafonte, and Eric Garshick declare that they have no conflict of interest. This study received support from: The National Institute of Arthritis and Musculoskeletal and Skin Diseases [1R01AR059270-01], National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR 90SI5007-01-02), The Office of Research and Development, Rehabilitation Research and Development [Merit Review Grant B6618R and RX-000792-01A2], and The Massachusetts Veterans Epidemiology Research and Information Center, Cooperative Studies Program, Department of Veterans Affairs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morse, L.R., Nguyen, N., Battaglino, R.A. et al. Wheelchair use and lipophilic statin medications may influence bone loss in chronic spinal cord injury: findings from the FRASCI-bone loss study. Osteoporos Int 27, 3503–3511 (2016). https://doi.org/10.1007/s00198-016-3678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3678-4

Keywords

Navigation