Skip to main content

Advertisement

Log in

Associations between OPG and RANKL polymorphisms, vertebral fractures, and abdominal aortic calcification in community-dwelling older subjects: the Sao Paulo Ageing & Health Study (SPAH)

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This is the first study analyzing concomitantly osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL) polymorphisms and OPG/RANKL serum levels and their association with bone mineral density (BMD), vertebral fractures, and vascular aortic calcification in a cohort of 800 subjects in community-dwelling older individuals.

Introduction

Osteoprotegerin (OPG) and RANKL play an important role in osteoclast activation and differentiation as well as in vascular calcification. At present, there are no studies of OPG or RANKL gene polymorphisms in Brazilian older populations. The aim of this study was to evaluate OPG/RANKL polymorphism and their association with vertebral fractures (VFs) and aortic calcification.

Methods

Eight hundred subjects (497 women/303 men) were genotyped for the OPG 1181G>C (rs2073618), 163C>T (rs3102735), 245T>G (rs3134069), and 209G>A (rs3134070) and RANKL A>G (rs2277438) single-nucleotide polymorphisms (SNPs). VFs were evaluated by spine radiography (Genant’s method). Aortic calcification was quantified using Kauppila’s method.

Results

The isolated genotype analyses and single-allele frequency data showed association of OPG 163C, 245G, and 209A alleles with presence of VFs (P < 0.05). Multiple logistic regression of subjects with absence of VFs vs. those with VFs (grades II/III) revealed only OPG 209A homozygosity as a risk factor for higher-grade VFs (odds ratio (OR) = 4.17, 95 % CI 1.03–16.93, P = 0.046). Regarding aortic calcification, the isolated genotype analysis frequency data revealed a significant association of OPG 1181G, 163C, 245G, and 209A alleles with absent aortic calcification (P < 0.05). Multiple logistic regression data confirmed that the OPG 209A allele was protective for aortic calcification (OR = 0.63, 95 % CI 0.45–0.88, P = 0.007) and the OPG 1181C allele was a risk factor for aortic calcification (OR = 1.26, 95 % CI 1.00–1.58, P = 0.046).

Conclusion

This study showed that the OPG 209AA genotype was a risk factor for higher-grade VFs, the OPG 209A allele was protective for aortic calcification, and the OPG 1181C was a risk factor for aortic calcification, supporting the involvement of OPG polymorphisms in the analyzed phenotypes and the concept that the related pathogenesis is multifactorial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055. doi:10.1210/endo.142.12.8536

    Article  CAS  PubMed  Google Scholar 

  2. Pocock NA, Eisman JA, Hopper JL et al (1987) Genetic determinants of bone mass in adults. A twin study. J Clin Invest 80:706–710. doi:10.1172/JCI113125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Langdahl BL, Carstens M, Stenkjaer L, Eriksen EF (2002) Polymorphisms in the osteoprotegerin gene are associated with osteoporotic fractures. J Bone Miner Res 17:1245–1255. doi:10.1359/jbmr.2002.17.7.1245

    Article  CAS  PubMed  Google Scholar 

  4. Arko B, Prezelj J, Kocijancic A et al (2005) Association of the osteoprotegerin gene polymorphisms with bone mineral density in postmenopausal women. Maturitas 51:270–279. doi:10.1016/j.maturitas.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  5. Ralston SH (2002) Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 87:2460–2466. doi:10.1210/jcem.87.6.8621

    Article  CAS  PubMed  Google Scholar 

  6. Yamada Y (2001) Association of polymorphisms of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis. Pharmacogenetics 11:765–771

    Article  CAS  PubMed  Google Scholar 

  7. Kurt O, Yilmaz-Aydogan H, Uyar M et al (2012) Evaluation of ERalpha and VDR gene polymorphisms in relation to bone mineral density in Turkish postmenopausal women. Mol Biol Rep 39:6723–6730. doi:10.1007/s11033-012-1496-0

    Article  CAS  PubMed  Google Scholar 

  8. Ioannidis JPA, Ralston SH, Bennett ST et al (2004) Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 292:2105–2114. doi:10.1001/jama.292.17.2105

    Article  CAS  PubMed  Google Scholar 

  9. Mann V, Ralston SH (2003) Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone 32:711–717

    Article  CAS  PubMed  Google Scholar 

  10. Yamada Y, Ando F, Niino N, Shimokata H (2003) Association of polymorphisms of the osteoprotegerin gene with bone mineral density in Japanese women but not men. Mol Genet Metab 80:344–349. doi:10.1016/S1096-7192(03)00125-2

    Article  CAS  PubMed  Google Scholar 

  11. Vidal C, Formosa R, Xuereb-Anastasi A (2011) Functional polymorphisms within the TNFRSF11B (osteoprotegerin) gene increase the risk for low bone mineral density. J Mol Endocrinol 47:327–333. doi:10.1530/JME-11-0067

    Article  CAS  PubMed  Google Scholar 

  12. Arko B, Prezelj J, Komel R et al (2002) Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab 87:4080–4084. doi:10.1210/jc.2002-020124

    Article  CAS  PubMed  Google Scholar 

  13. Bucay N, Sarosi I, Dunstan CR et al (1998) osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Demer LL, Watson KE, Bostrom K (1994) Mechanism of calcification in atherosclerosis. Trends Cardiovasc Med 4:45–49. doi:10.1016/1050-1738(94)90025-6

    Article  CAS  PubMed  Google Scholar 

  15. Fitzpatrick LA, Severson A, Edwards WD, Ingram RT (1994) Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J Clin Invest 94:1597–1604. doi:10.1172/JCI117501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bostrom K, Watson KE, Horn S et al (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91:1800–1809. doi:10.1172/JCI116391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106:273–278

    Article  PubMed  Google Scholar 

  18. Schulz E, Arfai K, Liu X et al (2004) Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 89:4246–4253. doi:10.1210/jc.2003-030964

    Article  CAS  PubMed  Google Scholar 

  19. Figueiredo CP, Rajamannan NM, Lopes JB et al (2013) Serum phosphate and hip bone mineral density as additional factors for high vascular calcification scores in a community-dwelling: the Sao Paulo Ageing & Health Study (SPAH). Bone 52:354–359. doi:10.1016/j.bone.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  20. Choi JY, Shin A, Park SK et al (2005) Genetic polymorphisms of OPG, RANK, and ESR1 and bone mineral density in Korean postmenopausal women. Calcif Tissue Int 77:152–159. doi:10.1007/s00223-004-0264-0

    Article  CAS  PubMed  Google Scholar 

  21. Ohmori H, Makita Y, Funamizu M et al (2002) Linkage and association analyses of the osteoprotegerin gene locus with human osteoporosis. J Hum Genet 47:400–406. doi:10.1007/s100380200058

    Article  CAS  PubMed  Google Scholar 

  22. Vidal C, Brincat M, Xuereb Anastasi A (2006) TNFRSF11B gene variants and bone mineral density in postmenopausal women in Malta. Maturitas 53:386–395. doi:10.1016/j.maturitas.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  23. Wynne F, Drummond F, O’Sullivan K et al (2002) Investigation of the genetic influence of the OPG, VDR (Fok1), and COLIA1 Sp1 polymorphisms on BMD in the Irish population. Calcif Tissue Int 71:26–35. doi:10.1007/s00223-001-2081-z

    Article  CAS  PubMed  Google Scholar 

  24. Zhao H, Liu J, Ning G et al (2005) The influence of Lys3Asn polymorphism in the osteoprotegerin gene on bone mineral density in Chinese postmenopausal women. Osteoporos Int 16:1519–1524. doi:10.1007/s00198-005-1865-9

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Unzueta MT, Riancho JA, Zarrabeitia MT et al (2008) Association of the 163A/G and 1181G/C osteoprotegerin polymorphism with bone mineral density. Horm Metab Res = Horm und Stoffwechselforsch = Horm Metab 40:219–224. doi:10.1055/s-2008-1046793

    Article  CAS  Google Scholar 

  26. Lee YH, Woo J-H, Choi SJ et al (2010) Associations between osteoprotegerin polymorphisms and bone mineral density: a meta-analysis. Mol Biol Rep 37:227–234. doi:10.1007/s11033-009-9637-9

    Article  CAS  PubMed  Google Scholar 

  27. Moffett SP, Oakley JI, Cauley JA et al (2008) Osteoprotegerin Lys3Asn polymorphism and the risk of fracture in older women. J Clin Endocrinol Metab 93:2002–2008. doi:10.1210/jc.2007-1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim JG, Kim JH, Kim JY et al (2007) Association between osteoprotegerin (OPG), receptor activator of nuclear factor-kappaB (RANK), and RANK ligand (RANKL) gene polymorphisms and circulating OPG, soluble RANKL levels, and bone mineral density in Korean postmenopausal women. Menopause 14:913–918. doi:10.1097/gme.0b013e31802d976f

    Article  PubMed  Google Scholar 

  29. Ueland T, Bollerslev J, Wilson SG et al (2007) No associations between OPG gene polymorphisms or serum levels and measures of osteoporosis in elderly Australian women. Bone 40:175–181. doi:10.1016/j.bone.2006.06.022

    Article  CAS  PubMed  Google Scholar 

  30. Jorgensen HL, Kusk P, Madsen B et al (2004) Serum osteoprotegerin (OPG) and the A163G polymorphism in the OPG promoter region are related to peripheral measures of bone mass and fracture odds ratios. J Bone Miner Metab 22:132–138. doi:10.1007/s00774-003-0461-3

    Article  CAS  PubMed  Google Scholar 

  31. Lopes JB, Danilevicius CF, Takayama L et al (2011) Prevalence and risk factors of radiographic vertebral fracture in Brazilian community-dwelling elderly. Osteoporos Int 22:711–719. doi:10.1007/s00198-010-1258-6

    Article  CAS  PubMed  Google Scholar 

  32. Binkley N, Bilezikian JP, Kendler DL et al (2006) Official positions of the International Society for Clinical Densitometry and Executive Summary of the 2005 Position Development Conference. J Clin Densitom 9:4–14. doi:10.1016/j.jocd.2006.05.002

    Article  PubMed  Google Scholar 

  33. Domiciano DS, Figueiredo CP, Lopes JB et al (2013) Vertebral fracture assessment by dual X-ray absorptiometry: a valid tool to detect vertebral fractures in community-dwelling older adults in a population-based survey. Arthritis Care Res (Hoboken) 65:809–815. doi:10.1002/acr.21905

    Article  CAS  Google Scholar 

  34. Kauppila LI, Polak JF, Cupples LA et al (1997) New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132:245–250

    Article  CAS  PubMed  Google Scholar 

  35. Bonfa AC, Seguro LPC, Caparbo V et al (2015) RANKL and OPG gene polymorphisms: associations with vertebral fractures and bone mineral density in premenopausal systemic lupus erythematosus. Osteoporos Int 26:1563–1571. doi:10.1007/s00198-015-3029-x

    Article  CAS  PubMed  Google Scholar 

  36. Piedra M, Garcia-Unzueta MT, Berja A et al (2011) Single nucleotide polymorphisms of the OPG/RANKL system genes in primary hyperparathyroidism and their relationship with bone mineral density. BMC Med Genet 12:168. doi:10.1186/1471-2350-12-168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brandstrom H, Gerdhem P, Stiger F et al (2004) Single nucleotide polymorphisms in the human gene for osteoprotegerin are not related to bone mineral density or fracture in elderly women. Calcif Tissue Int 74:18–24. doi:10.1007/s00223-002-2136-9

    Article  CAS  PubMed  Google Scholar 

  38. Mencej-Bedrac S, Prezelj J, Marc J (2011) TNFRSF11B gene polymorphisms 1181G > C and 245T > G as well as haplotype CT influence bone mineral density in postmenopausal women. Maturitas 69:263–267. doi:10.1016/j.maturitas.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  39. Wang Q, Chen Z, Huang Y et al (2013) The relationship between osteoprotegerin gene polymorphisms and bone mineral density in Chinese postmenopausal women. Int Immunopharmacol 17:404–407. doi:10.1016/j.intimp.2013.06.031

    Article  CAS  PubMed  Google Scholar 

  40. Boronova I, Bernasovska J, Macekova S et al (2015) TNFRSF11B gene polymorphisms, bone mineral density, and fractures in Slovak postmenopausal women. J Appl Genet 56:57–63. doi:10.1007/s13353-014-0247-4

    Article  CAS  PubMed  Google Scholar 

  41. Wang C, Zhang Z, Zhang H et al (2012) Susceptibility genes for osteoporotic fracture in postmenopausal Chinese women. J Bone Miner Res 27:2582–2591. doi:10.1002/jbmr.1711

    Article  CAS  PubMed  Google Scholar 

  42. Jurado S, Nogues X, Agueda L et al (2010) Polymorphisms and haplotypes across the osteoprotegerin gene associated with bone mineral density and osteoporotic fractures. Osteoporos Int 21:287–296. doi:10.1007/s00198-009-0956-4

    Article  CAS  PubMed  Google Scholar 

  43. Hsu Y-H, Niu T, Terwedow HA et al (2006) Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum Genet 118:568–577. doi:10.1007/s00439-005-0062-4

    Article  CAS  PubMed  Google Scholar 

  44. Guo L, Tang K, Quan Z et al (2014) Association between seven common OPG genetic polymorphisms and osteoporosis risk: a meta-analysis. DNA Cell Biol 33:29–39. doi:10.1089/dna.2013.2206

    Article  PubMed  Google Scholar 

  45. Soufi M, Schoppet M, Sattler AM et al (2004) Osteoprotegerin gene polymorphisms in men with coronary artery disease. J Clin Endocrinol Metab 89:3764–3768. doi:10.1210/jc.2003-032054

    Article  CAS  PubMed  Google Scholar 

  46. Strand M, Soderstrom I, Wiklund P-G et al (2007) Polymorphisms at the osteoprotegerin and interleukin-6 genes in relation to first-ever stroke. Cerebrovasc Dis 24:418–425. doi:10.1159/000108431

    Article  CAS  PubMed  Google Scholar 

  47. Straface G, Biscetti F, Pitocco D et al (2011) Assessment of the genetic effects of polymorphisms in the osteoprotegerin gene, TNFRSF11B, on serum osteoprotegerin levels and carotid plaque vulnerability. Stroke 42:3022–3028. doi:10.1161/STROKEAHA.111.619288

    Article  CAS  PubMed  Google Scholar 

  48. Speer MY, Giachelli CM (2004) Regulation of cardiovascular calcification. Cardiovasc Pathol 13:63–70. doi:10.1016/S1054-8807(03)00130-3

    Article  CAS  PubMed  Google Scholar 

  49. Findlay DM, Atkins GJ (2011) Relationship between serum RANKL and RANKL in bone. Osteoporos Int 22:2597–2602. doi:10.1007/s00198-011-1740-9

    Article  CAS  PubMed  Google Scholar 

  50. D’Amelio P, Isaia G, Isaia GC (2009) The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. J Endocrinol Invest 32:6–9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Liliam Takayama for technical support and Jaqueline B. Lopes for her help in collected data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. R. Pereira.

Ethics declarations

Conflicts of interest

None.

Funding

This work was supported by the following organizations and grants: Fundação de Amparo e Pesquisa do Estado de São Paulo (FAPESP no. 03/09313-0 and no. 09/11755-7), Conselho Nacional de Ciência e Tecnologia (CNPQ no. 472754/2013-0 to RMRP), Federico Foundation (to RMRP), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES to CPF).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, R.M.R., Figueiredo, C.P., Cha, C.C. et al. Associations between OPG and RANKL polymorphisms, vertebral fractures, and abdominal aortic calcification in community-dwelling older subjects: the Sao Paulo Ageing & Health Study (SPAH). Osteoporos Int 27, 3319–3329 (2016). https://doi.org/10.1007/s00198-016-3664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3664-x

Keywords

Navigation