Skip to main content

Advertisement

Log in

Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in ovariectomy-induced osteoporotic rats

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Estrogen receptor (ER) in ovariectomy-induced osteoporotic fracture was reported to exhibit delayed expression. Mechanical stimulation enhanced ER-α expression in osteoporotic fracture callus at the tissue level. ER was also found to be required for the effectiveness of vibrational mechanical stimulation treatment in osteoporotic fracture healing.

Introduction

Estrogen receptor(ER) is involved in mechanical signal transduction in bone metabolism. Its expression was reported to be delayed in osteoporotic fracture healing. The purpose of this study was to investigate the roles played by ER during osteoporotic fracture healing enhanced with mechanical stimulation.

Methods

Ovariectomy-induced osteoporotic SD rats that received closed femoral fractures were divided into five groups, (i) SHAM, (ii) SHAM-VT, (iii) OVX, (iv) OVX-VT, and (v) OVX-VT-ICI, where VT stands for whole-body vibration treatment and ICI for ER antagonization by ICI 182,780. Callus formation and gene expression were assessed at 2, 4, and 8 weeks postfracture. In vitro osteoblastic differentiation, mineralization, and ER-α expression were assessed.

Results

The delayed ER expression was found to be enhanced by vibration treatment. Callus formation enhancement was shown by callus morphometry and micro-CT analysis. Enhancement effects by vibration were partially abolished when ER was modulated by ICI 182,780, in terms of callus formation capacity at 2–4 weeks and ER gene and protein expression at all time points. In vitro, ER expression in osteoblasts was not enhanced by VT treatment, but osteoblastic differentiation and mineralization were enhanced under estrogen-deprived condition. When osteoblastic cells were modulated by ICI 182,780, enhancement effects of VT were eliminated.

Conclusions

Vibration was able to enhance ER expression in ovariectomy-induced osteoporotic fracture healing. ER was essential in mechanical signal transduction and enhancement in callus formation effects during osteoporotic fracture healing enhanced by vibration. The enhancement of ER-α expression by mechanical stimulation was not likely to be related to the increased expression in osteoblastic cells but rather to the systemic enhancement in recruitment of ER-expressing progenitor cells through increased blood flow and neo-angiogenesis. This finding might explain the observed difference in mechanical sensitivity of osteoporotic fracture to mechanical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akesson K, Marsh D, Mitchell PJ, McLellan AR, Stenmark J, Pierroz DD, Kyer C, Cooper C (2013) Capture the Fracture: a Best Practice Framework and global campaign to break the fragility fracture cycle. Osteoporos Int 24:2135–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ho KS, Chan WM (2003) Falls in Elderly - A “Clinical Syndrome” and a Public Health Issue. In Department of Health HK (ed). Public Health & Epidemiology Bulletin, Hong Kong, pp 13-17

  3. Mithal A, Ebeling P (2013) Epidemiology, costs & burden of osteoporosis in 2013. In: Jagait CK, Misteli L, Pierroz D (eds) The Asia-pacific regional audit. International Osteoporosis Foundation, IOF, Asia-Pacific

    Google Scholar 

  4. Cheung WH, Sun MH, Zheng YP, Chu WC, Leung AH, Qin L, Wei FY, Leung KS (2012) Stimulated angiogenesis for fracture healing augmented by low-magnitude, high-frequency vibration in a rat model-evaluation of pulsed-wave doppler, 3-D power Doppler ultrasonography and micro-CT microangiography. Ultrasound Med Biol 38:2120–2129

    Article  PubMed  Google Scholar 

  5. Chow DH, Leung KS, Qin L, Leung AH, Cheung WH (2011) Low-magnitude high-frequency vibration (LMHFV) enhances bone remodeling in osteoporotic rat femoral fracture healing. J Orthop Res 29:746–752

    Article  PubMed  Google Scholar 

  6. Leung KS, Shi HF, Cheung WH, Qin L, Ng WK, Tam KF, Tang N (2009) Low-magnitude high-frequency vibration accelerates callus formation, mineralization, and fracture healing in rats. J Orthop Res 27:458–465

    Article  PubMed  Google Scholar 

  7. Shi HF, Cheung WH, Qin L, Leung AH, Leung KS (2010) Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. Bone 46:1299–1305

    Article  PubMed  Google Scholar 

  8. Gruber CJ, Tschugguel W, Schneeberger C, Huber JC (2002) Production and actions of estrogens. N Engl J Med 346:340–352

    Article  CAS  PubMed  Google Scholar 

  9. Planey SL, Kumar R, Arnott JA (2014) Estrogen receptors (ERalpha versus ERbeta): friends or foes in human biology? J Recept Signal Transduct Res 34:1–5

    Article  CAS  PubMed  Google Scholar 

  10. Jessop HL, Suswillo RF, Rawlinson SC, Zaman G, Lee K, Das-Gupta V, Pitsillides AA, Lanyon LE (2004) Osteoblast-like cells from estrogen receptor alpha knockout mice have deficient responses to mechanical strain. J Bone Miner Res 19:938–946

    Article  CAS  PubMed  Google Scholar 

  11. Zaman G, Jessop HL, Muzylak M, De Souza RL, Pitsillides AA, Price JS, Lanyon LL (2006) Osteocytes use estrogen receptor alpha to respond to strain but their ERalpha content is regulated by estrogen. J Bone Miner Res 21:1297–1306

    Article  CAS  PubMed  Google Scholar 

  12. Moverare S, Venken K, Eriksson AL et al (2003) Differential effects on bone of estrogen receptor alpha and androgen receptor activation in orchidectomized adult male mice. Proc Natl Acad Sci U S A 100:13573–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neidlinger-Wilke C, Stalla I, Claes L, Brand R, Hoellen I, Rubenacker S, Arand M, Kinzl L (1995) Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF beta-release in response to cyclic strain. J Biomech 28:1411–1418

    Article  CAS  PubMed  Google Scholar 

  14. Aguirre JI, Plotkin LI, Gortazar AR, Millan MM, O’Brien CA, Manolagas SC, Bellido T (2007) A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 282:25501–25508

    Article  CAS  PubMed  Google Scholar 

  15. Sunters A, Armstrong VJ, Zaman G, Kypta RM, Kawano Y, Lanyon LE, Price JS (2010) Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor alpha-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to Ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of beta-catenin signaling. J Biol Chem 285:8743–8758

    Article  CAS  PubMed  Google Scholar 

  16. Chow SK, Leung KS, Qin L, Wei F, Cheung WH (2014) Callus formation is related to the expression ratios of estrogen receptors-alpha and -beta in ovariectomy-induced osteoporotic fracture healing. Arch Orthop Trauma Surg 134:1405–1416

    Article  PubMed  Google Scholar 

  17. Cheung WH, Chow SK, Sun MH, Qin L, Leung KS (2011) Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing. Ultrasound Med Biol 37:231–238

    Article  PubMed  Google Scholar 

  18. Chow DH, Leung KS, Qin L, Leung AH, Cheung WH (2010) Low-magnitude high-frequency vibration (LMHFV) enhances bone remodeling in osteoporotic rat femoral fracture healing. J Orthop Res

  19. Chung SL, Leung KS, Cheung WH (2014) Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodeling during osteoporotic fracture healing in rats. J Orthop Res 32:1572–1579

    Article  CAS  PubMed  Google Scholar 

  20. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863–870

    CAS  PubMed  Google Scholar 

  21. Sibonga JD, Dobnig H, Harden RM, Turner RT (1998) Effect of the high-affinity estrogen receptor ligand ICI 182,780 on the rat tibia. Endocrinology 139:3736–3742

    CAS  PubMed  Google Scholar 

  22. Siu WS, Qin L, Cheung WH, Leung KS (2004) A study of trabecular bones in ovariectomized goats with micro-computed tomography and peripheral quantitative computed tomography. Bone 35:21–26

    Article  CAS  PubMed  Google Scholar 

  23. Li F, Chow S, Cheung WH, Chan FL, Chen S, Leung LK (2013) The citrus flavonone hesperetin prevents letrozole-induced bone loss in a mouse model of breast cancer. J Nutr Biochem 24:1112–1116

    Article  CAS  PubMed  Google Scholar 

  24. Namkung-Matthai H, Appleyard R, Jansen J, Hao Lin J, Maastricht S, Swain M, Mason RS, Murrell GA, Diwan AD, Diamond T (2001) Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 28:80–86

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  26. Bellows CG, Aubin JE, Heersche JN, Antosz ME (1986) Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int 38:143–154

    Article  CAS  PubMed  Google Scholar 

  27. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430

    Article  CAS  PubMed  Google Scholar 

  28. Lazzaro VA, Walker RJ, Duggin GG, Phippard A, Horvath JS, Tiller DJ (1992) Inhibition of fibroblast proliferation in L-valine reduced selective media. Res Commun Chem Pathol Pharmacol 75:39–48

    CAS  PubMed  Google Scholar 

  29. Damien E, Price JS, Lanyon LE (1998) The estrogen receptor’s involvement in osteoblasts’ adaptive response to mechanical strain. J Bone Miner Res 13:1275–1282

    Article  CAS  PubMed  Google Scholar 

  30. Gough JE, Notingher I, Hench LL (2004) Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res A 68:640–650

    Article  CAS  PubMed  Google Scholar 

  31. Tam KF, Cheung WH, Lee KM, Qin L, Leung KS (2005) Delayed stimulatory effect of low-intensity shockwaves on human periosteal cells. Clin Orthop Relat Res 438:260–265

    Article  PubMed  Google Scholar 

  32. Tam KF, Cheung WH, Lee KM, Qin L, Leung KS (2008) Osteogenic effects of low-intensity pulsed ultrasound, extracorporeal shockwaves and their combination—an in vitro comparative study on human periosteal cells. Ultrasound Med Biol 34:1957–1965

    Article  PubMed  Google Scholar 

  33. Masuda A, Nishikawa T, Yamamoto T, Kobayashi M (2008) Simple method for Photoshop-aided double immunohistochemistry—usage of ‘image stack’ function. Histopathology 53:609–610

    CAS  PubMed  Google Scholar 

  34. Matkowskyj KA, Schonfeld D, Benya RV (2000) Quantitative immunohistochemistry by measuring cumulative signal strength using commercially available software photoshop and matlab. J Histochem Cytochem 48:303–312

    Article  CAS  PubMed  Google Scholar 

  35. Boden SD, Joyce ME, Oliver B, Heydemann A, Bolander ME (1989) Estrogen receptor mRNA expression in callus during fracture healing in the rat. Calcif Tissue Int 45:324–325

    Article  CAS  PubMed  Google Scholar 

  36. Cheung WH, Chin WC, Qin L, Leung KS (2011) Low intensity pulsed ultrasound enhances fracture healing in both ovariectomy-induced osteoporotic and age-matched normal bones. J Orthop Res

  37. Komrakova M, Sehmisch S, Tezval M et al (2013) Identification of a vibration regime favorable for bone healing and muscle in estrogen-deficient rats. Calcif Tissue Int 92:509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stuermer EK, Komrakova M, Werner C et al (2010) Musculoskeletal response to whole-body vibration during fracture healing in intact and ovariectomized rats. Calcif Tissue Int 87:168–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wehrle E, Liedert A, Heilmann A et al (2015) The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice. Dis Model Mech 8:93–104

    Article  CAS  PubMed  Google Scholar 

  40. Damien E, Price JS, Lanyon LE (2000) Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J Bone Miner Res 15:2169–2177

    Article  CAS  PubMed  Google Scholar 

  41. Galea GL, Meakin LB, Sugiyama T, Zebda N, Sunters A, Taipaleenmaki H, Stein GS, van Wijnen AJ, Lanyon LE, Price JS (2013) Estrogen receptor alpha mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down-regulation of the Wnt antagonist Sost is mediated by estrogen receptor beta. J Biol Chem 288:9035–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liedert A, Wagner L, Seefried L, Ebert R, Jakob F, Ignatius A (2010) Estrogen receptor and Wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem Biophys Res Commun 394:755–759

    Article  CAS  PubMed  Google Scholar 

  43. Lima F, Vico L, Lafage-Proust MH, van der Saag P, Alexandre C, Thomas T (2004) Interactions between estrogen and mechanical strain effects on U2OS human osteosarcoma cells are not influenced by estrogen receptor type. Bone 35:1127–1135

    Article  CAS  PubMed  Google Scholar 

  44. Zhou S, Zilberman Y, Wassermann K, Bain SD, Sadovsky Y, Gazit D (2001) Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem Suppl 36:144–155

    Article  PubMed  Google Scholar 

  45. Wei FY, Leung KS, Li G, Qin J, Chow SK, Huang S, Sun MH, Qin L, Cheung WH (2014) Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing. PLoS One 9, e106722

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yuan L, Sakamoto N, Song G, Sato M (2013) Low-level shear stress induces human mesenchymal stem cell migration through the SDF-1/CXCR4 axis via MAPK signaling pathways. Stem Cells Dev 22:2384–2393

    Article  CAS  PubMed  Google Scholar 

  47. Kim SY, Park SH, Shin JW, Kang YG, Jeon KJ, Hyun JS, Oh MJ (2013) Mechanical stimulation and the presence of neighboring cells greatly affect migration of human mesenchymal stem cells. Biotechnol Lett 35:1817–1822

    Article  CAS  PubMed  Google Scholar 

  48. Fong EL, Chan CK, Goodman SB (2011) Stem cell homing in musculoskeletal injury. Biomaterials 32:395–409

    Article  CAS  PubMed  Google Scholar 

  49. Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today 90:75–85

    Article  CAS  PubMed  Google Scholar 

  51. Wu QQ, Chen Q (2000) Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res 256:383–391

    Article  CAS  PubMed  Google Scholar 

  52. Okazaki R, Inoue D, Shibata M, Saika M, Kido S, Ooka H, Tomiyama H, Sakamoto Y, Matsumoto T (2002) Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 143:2349–2356

    CAS  PubMed  Google Scholar 

  53. Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57:344–358

    Article  CAS  PubMed  Google Scholar 

  54. Imai Y, Kondoh S, Kouzmenko A, Kato S (2010) Minireview: osteoprotective action of estrogens is mediated by osteoclastic estrogen receptor-alpha. Mol Endocrinol 24:877–885

    Article  CAS  PubMed  Google Scholar 

  55. Martin-Millan M, Almeida M, Ambrogini E, Han L, Zhao H, Weinstein RS, Jilka RL, O’Brien CA, Manolagas SC (2010) The estrogen receptor-alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol Endocrinol 24:323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rubinacci A, Marenzana M, Cavani F et al (2008) Ovariectomy sensitizes rat cortical bone to whole-body vibration. Calcif Tissue Int 82:316–326

    Article  CAS  PubMed  Google Scholar 

  57. He YX, Liu Z, Pan XH et al (2012) Deletion of estrogen receptor beta accelerates early stage of bone healing in a mouse osteotomy model. Osteoporos Int 23:377–389

    Article  CAS  PubMed  Google Scholar 

  58. Lindberg MK, Moverare S, Skrtic S, Gao H, Dahlman-Wright K, Gustafsson JA, Ohlsson C (2003) Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a "ying yang" relationship between ERalpha and ERbeta in mice. Mol Endocrinol 17:203–208

    Article  CAS  PubMed  Google Scholar 

  59. Liu Y, Gao H, Marstrand TT, Strom A, Valen E, Sandelin A, Gustafsson JA, Dahlman-Wright K (2008) The genome landscape of ERalpha- and ERbeta-binding DNA regions. Proc Natl Acad Sci U S A 105:2604–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (NSFC) (Reference: A.03.15.02401), the Asian Association for Dynamic Osteosynthesis Research Fund (AADO-RF2010-001-2Y), and the Direct Grant for Research of the Chinese University of Hong Kong (2009.1.044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Cheung.

Ethics declarations

Conflict of interest

Wing-Hoi Cheung, Simon Kwoon-Ho Chow, Kwok Sui Leung, Jianghui Qin, Anyun Guo, Minghui Sun, and Ling Qin declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, S.K.H., Leung, K.S., Qin, J. et al. Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in ovariectomy-induced osteoporotic rats. Osteoporos Int 27, 2989–3000 (2016). https://doi.org/10.1007/s00198-016-3619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3619-2

Keywords

Navigation