Skip to main content
Log in

Vertebral body morphology is associated with incident lumbar vertebral fracture in postmenopausal women. The OFELY study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We investigate the predictive role of vertebral anterior cortical curvature and height heterogeneity in the occurrence of vertebral fractures in postmenopausal women. Women who will fracture had shorter vertebral height, greater heterogeneity of height than those who will not fracture, and their anterior vertebral body edge was less concave.

Introduction

Vertebral morphology has been demonstrated to be associated with further risk of fracture. The aim of this study was to analyze vertebral anterior cortical curvature (Ct.curv) and vertebral height heterogeneity in postmenopausal women before the occurrence of a vertebral fracture.

Methods

This case–control study included 29 postmenopausal women who have underwent incident lumbar vertebral fractures (mean age 71 ± 9 years, mean time to fractures 9 ± 4 years), age-matched with 57 controls. From lateral X-rays of lumbar spine radiographs (T12 to L4), the following parameters were measured: (1) the posterior, middle, and anterior vertebral heights; (2) the heterogeneity of heights evaluated by the coefficient of variation of these three variables; (3) antero-posterior width, a 2D estimator of cross-sectional area; and (4) Ct.curv.

Results

Mean vertebral heights were significantly lower among women who fractured than in controls (p < 0.05). The anterior and middle heights were significantly lower at L4 and L3 levels in fracture group (p = 0.02). The heterogeneity of vertebral height was significantly greater in the fracture group (p = 0.003). In addition, fractured patients had a significantly higher Ct.curv on L3 (p = 0.04). After adjustment for bone mineral density (BMD), only the heterogeneity of vertebral height remained significant (p = 0.005).

Conclusion

The current case–control study confirmed the association between vertebral height and occurrence of future vertebral fracture in postmenopausal women. The vertebrae with the smallest Ct.curv tended to fracture less often, and the heterogeneity of vertebral heights was associated with future fracture independently of BMD. An additional validation in a prospective study would be needed to confirm these initial results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen H, Kubo KY (2014) Bone three-dimensional microstructural features of the common osteoporotic fracture sites. World J Orthop 5(4):486–495

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cummings SR, Black DM, Rubin SM (1989) Lifetime risk of hip, Colles’, or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med 149:2445–2448

    Article  CAS  PubMed  Google Scholar 

  3. Yoon SP, Ki CH, Lee YT, Hong SH, Lee HM, Moon SH (2014) Quality of life in patients with osteoporotic vertebral fractures. Asian Spine J Oct 8(5):653–8

    Article  Google Scholar 

  4. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301(5):513–21

    Article  CAS  PubMed  Google Scholar 

  5. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. World Health Organization (1994) Assessment of fracture risk and its application to screening for post-menopausal osteoporosis. WHO, Geneva

    Google Scholar 

  7. McDonnell P, McHugh PE, O’Mahoney D (2007) Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng 35:170–189

    Article  CAS  PubMed  Google Scholar 

  8. Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD (2005) Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 20:1813–1819

    Article  PubMed  Google Scholar 

  9. Siris ES, Chen YT, Abbott TA et al (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164(10):1108–1112

    Article  PubMed  Google Scholar 

  10. Schuit SCE, van der Klift M, Weel AEAM et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34:195–202

    Article  CAS  PubMed  Google Scholar 

  11. Kothari M, Keaveny TM, Lin JC, Newitt DC, Majumdar S (1999) Measurement of intraspecimen variations in vertebral cancellous bone architecture. Bone 25(2):245–50

    Article  CAS  PubMed  Google Scholar 

  12. Roux JP, Wegrzyn J, Arlot ME, Guyen O, Chapurlat R, Bouxsein ML (2010) Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae. An ex-vivo study. J Bone Miner Res 25(2):356–361

    Article  PubMed  Google Scholar 

  13. Wegrzyn J, Roux JP, Arlot ME, Boutroy S, Vilayphiou N, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML (2010) Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae. J Bone Miner Res 25(11):2324–31

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wegrzyn J, Roux JP, Arlot ME, Boutroy S, Vilayphiou N, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML (2011) Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture. J Bone Miner Res 26(4):739–746

    Article  PubMed  Google Scholar 

  15. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–15

    Article  CAS  PubMed  Google Scholar 

  16. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22(3):425–33

    Article  PubMed  Google Scholar 

  17. Vilayphiou N, Boutroy S, Sornay-Rendu E, Van Rietbergen B, Munoz F, Delmas PD, Chapurlat R (2010) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone 46(4):1030–7

    Article  PubMed  Google Scholar 

  18. Vilayphiou N, Boutroy S, Szulc P, van Rietbergen B, Munoz F, Delmas PD, Chapurlat R (2011) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res 26(5):965–73

    Article  PubMed  Google Scholar 

  19. Kanis JA, johnell O, Oden A, Sembo I, Rdlund-johnell I, Dawson A et al (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporosis Int 11:669–74

    Article  CAS  Google Scholar 

  20. Gerdhem P (2013) Osteoporosis and fragility fractures: vertebral fractures Best Pract. Res Clin Rheumatol 27(6):743–55

    Article  Google Scholar 

  21. Bliuc D, Alarkawi D, Nguyen TV, Eisman JA, Center JR (2015) Risk of subsequent fractures and mortality in elderly women and men with fragility fractures with and without osteoporotic bone density: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res 30(4):637–46

    Article  PubMed  Google Scholar 

  22. Diacinti D, Pisan D, Barone-Adesi F, Del Fiacco R, Minisola S, David V, Alberti G, Mazzuoli GF (2010) A new predictive index for vertebral fractures: the sum of the anterior vertebral body heights. Bone 46(3):768–73

    Article  CAS  PubMed  Google Scholar 

  23. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–48

    Article  CAS  PubMed  Google Scholar 

  24. Szulc P, Munoz F, Marchand F, Delmas PD (2001) Semiquantitative evaluation of prevalent vertebral deformities in men and their relationship with osteoporosis the MINOS study. Osteoporos Int 12(4):302–10

    Article  CAS  PubMed  Google Scholar 

  25. Alanay A, Pekmezci M, Karaeminogullari O, Acaroglu E, Yazici M, Cil A, Pijnenburg B, Genç Y, Oner FC (2007) Radiographic measurement of the sagittal plane deformity in patients with osteoporotic spinal fractures evaluation of intrinsic error. Eur Spine J 16(12):2126–32

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guglielmi G, Diacinti D, Van Kuijk C, Aparisi F, Krestan C, Adams JE, Link TM (2008) Vertebral morphometry: current methods and recent advances. Eur Radiol 18:1484–1496

    Article  CAS  PubMed  Google Scholar 

  27. Edmondston SJ, Price RI, Valente B, Singer KP (1999) Measurement of vertebral body heights: ex vivo comparisons between morphometric X-ray absorptiometry, morphometric radiography and direct measurements. Osteoporos Int 10(1):7–13

    Article  CAS  PubMed  Google Scholar 

  28. Ruyssen-Witrand A, Gossec L, Kolta S, Dougados M, Roux C (2007) vertebral dimensions as risk factor of vertebral fracture in osteoporotic patients: a systematic literature review. Osteoporos Int 18:1271–1278

    Article  CAS  PubMed  Google Scholar 

  29. Frobin W, Brinckmann P, Biggemann M, Tilloston M, Burton K (1997) Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin Biomechanics 12:S1–S64

    Article  Google Scholar 

  30. Tan S, Yao J, Yao L, Ward MM. High precision semi-automated vertebral height measurement using computed tomography: a phantom study (2012) Conf Proc IEEE Eng Med Biol Soc :1554–7

  31. Garnero P, Borel O, Sornay-Rendu E, Arlot ME, Delmas PD (1996) Vitamin D receptor gene polymorphisms are not related to bone turnover, rate of bone loss, and bone mass in postmenopausal women. The OFELY study. J Bone Miner Res 11(6):827–34

    Article  CAS  PubMed  Google Scholar 

  32. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women. The OFELY cohort. J Bone Miner Res 12(4):683–90

    Article  CAS  PubMed  Google Scholar 

  33. Kolta S, Kerkeni S, Travert C, Skalli W, Eastell R, Glüer CC, Roux C (2012) Variations in vertebral body dimensions in women measured by 3D-XA: a longitudinal in vivo study. Bone 50(3):777–83

    Article  CAS  PubMed  Google Scholar 

  34. Diacinti D, Guglielmi G (2010) Vertebral morphometry. Radiol Clin North Am 48(3):561–75

    Article  PubMed  Google Scholar 

  35. Guglielmi G, Stoppino LP, Placentino MG, D’Errico F, Palmieri F (2009) Reproducibility of a semi-automatic method for 6-point vertebral morphometry in a multi-centre trial. Eur J Radiol Jan 69(1):173–8

    Article  Google Scholar 

  36. Gibson LJ, Ashby MF (1997) Cancellous bone. In: Cellular solids. Structure and properties. 2nd ed Cambridge UK Cambridge university Press pp 429–452

  37. Kopperdahl DL, Pearlman JL, Keaveny TM (2000) Biomechanical consequences of an isolated overload on the human vertebral body. J Orthop Res 18(5):685–90

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Roux.

Ethics declarations

Written informed consent was obtained from each subject, and the study was approved by the local ethics committee.

Conflict of interest

Jean-Paul Roux, Safaa Belghali, Julien Wegrzyn, Elisabeth Sornay-Rendu, and Roland Chapurlat declare that they have no conflict of interest.

Additional information

J. P. Roux and S. Belghali contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roux, J.P., Belghali, S., Wegrzyn, J. et al. Vertebral body morphology is associated with incident lumbar vertebral fracture in postmenopausal women. The OFELY study. Osteoporos Int 27, 2507–2513 (2016). https://doi.org/10.1007/s00198-016-3558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3558-y

Keywords

Navigation