Skip to main content

Advertisement

Log in

Young adults with cystic fibrosis have altered trabecular microstructure by ITS-based morphological analysis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Young adults with cystic fibrosis have compromised plate-like trabecular microstructure, altered axial alignment of trabeculae, and reduced connectivity between trabeculae that may contribute to the reduced bone strength and increased fracture risk observed in this patient population.

Introduction

The risk of fracture is increased in patients with cystic fibrosis (CF). Individual trabecular segmentation (ITS)-based morphological analysis of high-resolution peripheral quantitative computed tomography (HR-pQCT) images segments trabecular bone into individual plates and rods of different alignment and connectivity, which are important determinants of trabecular bone strength. We sought to determine whether alterations in ITS variables are present in patients with CF and may help explain their increased fracture risk.

Methods

Thirty patients with CF ages 18–40 years underwent DXA scans of the hip and spine and HR-pQCT scans of the radius and tibia with further assessment of trabecular microstructure by ITS. These CF patients were compared with 60 healthy controls matched for age (±2 years), race, and gender.

Results

Plate volume fraction, thickness, and density as well as plate-plate and plate-rod connectivity were reduced, and axial alignment of trabeculae was lower in subjects with CF at both the radius and the tibia (p < 0.05 for all). At the radius, adjustment for BMI eliminated most of these differences. At the tibia, however, reductions in plate volume fraction and number, axially aligned trabeculae, and plate-plate connectivity remained significant after adjustment for BMI alone and for BMI and aBMD (p < 0.05 for all).

Conclusions

Young adults with CF have compromised plate-like and axially aligned trabecular morphology and reduced connectivity between trabeculae. ITS analysis provides unique information about bone integrity, and these trabecular deficits may help explain the increased fracture risk in adults with CF not accounted for by BMD and/or traditional bone microarchitecture measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aris RM, Merkel PA, Bachrach LK, Borowitz DS, Boyle MP, Elkin SL et al (2005) Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab 90(3):1888–1896

    Article  CAS  PubMed  Google Scholar 

  2. Stalvey MS, Clines GA (2013) Cystic fibrosis-related bone disease: insights into a growing problem. Curr Opin Endocrinol Diabetes Obes 20(6):547–552

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jacquot J, Delion M, Gangloff S, Braux J, Velard F (2015) Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos Int. doi:10.1007/s00198-015-3343-3

  4. Sermet-Gaudelus I, Bianchi ML, Garabedian M, Aris RM, Morton A, Hardin DS et al (2011) European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros 10(Suppl 2):S16–S23

    Article  PubMed  Google Scholar 

  5. Putman MS, Baker JF, Uluer A, Herlyn K, Lapey A, Sicilian L et al (2015) Trends in bone mineral density in young adults with cystic fibrosis over a 15 year period. J Cyst Fibros 14:526–532

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bianchi ML, Romano G, Saraifoger S, Costantini D, Limonta C, Colombo C (2006) BMD and body composition in children and young patients affected by cystic fibrosis. J Bone Miner Res 21(3):388–396

    Article  PubMed  Google Scholar 

  7. Conway SP, Morton AM, Oldroyd B, Truscott JG, White H, Smith AH et al (2000) Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: prevalence and associated factors. Thorax 55(9):798–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grey V, Atkinson S, Drury D, Casey L, Ferland G, Gundberg C et al (2008) Prevalence of low bone mass and deficiencies of vitamins D and K in pediatric patients with cystic fibrosis from 3 Canadian centers. Pediatrics 122(5):1014–1020

    Article  PubMed  Google Scholar 

  9. Sheikh S, Gemma S, Patel A (2015) Factors associated with low bone mineral density in patients with cystic fibrosis. J Bone Miner Metab 33(2):180–185

    Article  CAS  PubMed  Google Scholar 

  10. Elkin SL, Fairney A, Burnett S, Kemp M, Kyd P, Burgess J et al (2001) Vertebral deformities and low bone mineral density in adults with cystic fibrosis: a cross-sectional study. Osteoporos Int 12(5):366–372

    Article  CAS  PubMed  Google Scholar 

  11. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73(6):1332–1339

    Article  CAS  PubMed  Google Scholar 

  12. Stephenson A, Jamal S, Dowdell T, Pearce D, Corey M, Tullis E (2006) Prevalence of vertebral fractures in adults with cystic fibrosis and their relationship to bone mineral density. Chest 130(2):539–544

    Article  PubMed  Google Scholar 

  13. Putman MS, Milliren CE, Derrico N, Uluer A, Sicilian L, Lapey A et al (2014) Compromised bone microarchitecture and estimated bone strength in young adults with cystic fibrosis. J Clin Endocrinol Metab 99(9):3399–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walker MD, Liu XS, Zhou B, Agarwal S, Liu G, McMahon DJ et al (2013) Premenopausal and postmenopausal differences in bone microstructure and mechanical competence in Chinese-American and white women. J Bone Miner Res 28(6):1308–1318

    Article  PubMed  PubMed Central  Google Scholar 

  15. Walker MD, Shi S, Russo JJ, Liu XS, Zhou B, Zhang C et al (2014) A trabecular plate-like phenotype is overrepresented in Chinese-American versus Caucasian women. Osteoporos Int 25(12):2787–2795

    Article  CAS  PubMed  Google Scholar 

  16. Liu XS, Cohen A, Shane E, Stein E, Rogers H, Kokolus SL et al (2010) Individual trabeculae segmentation (ITS)-based morphological analysis of high-resolution peripheral quantitative computed tomography images detects abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J Bone Miner Res 25(7):1496–1505

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mitchell DM, Tuck P, Ackerman KE, Cano Sokoloff N, Woolley R, Slattery M et al (2015) Altered trabecular bone morphology in adolescent and young adult athletes with menstrual dysfunction. Bone 81:24–30

    Article  PubMed  Google Scholar 

  18. Stein EM, Kepley A, Walker M, Nickolas TL, Nishiyama K, Zhou B et al (2014) Skeletal structure in postmenopausal women with osteopenia and fractures is characterized by abnormal trabecular plates and cortical thinning. J Bone Miner Res 29(5):1101–1109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A et al (2012) Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res 27(2):263–272

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515

    Article  CAS  PubMed  Google Scholar 

  21. MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29(10):1096–1105

    Article  PubMed  Google Scholar 

  22. Boyd SK (2008) Site-specific variation of bone micro-architecture in the distal radius and tibia. J Clin Densitom 11(3):424–430

    Article  PubMed  Google Scholar 

  23. Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM et al (2008) Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res 23(2):223–235

    Article  PubMed  Google Scholar 

  24. Liu XS, Shane E, McMahon DJ, Guo XE (2011) Individual trabecula segmentation (ITS)-based morphological analysis of microscale images of human tibial trabecular bone at limited spatial resolution. J Bone Miner Res 26(9):2184–2193

    Article  PubMed  Google Scholar 

  25. Stein EM, Silva BC, Boutroy S, Zhou B, Wang J, Udesky J et al (2013) Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J Bone Miner Res 28(5):1029–1040

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu XS, Walker MD, McMahon DJ, Udesky J, Liu G, Bilezikian JP et al (2011) Better skeletal microstructure confers greater mechanical advantages in Chinese-American women versus white women. J Bone Miner Res 26(8):1783–1792

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE (2009) Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech 42(3):249–256

    Article  PubMed  Google Scholar 

  28. Stallings VA, Stark LJ, Robinson KA, Feranchak AP, Quinton H (2008) Evidence-based practice recommendations for nutrition-related management of children and adults with cystic fibrosis and pancreatic insufficiency: results of a systematic review. J Am Diet Assoc 108(5):832–839

    Article  PubMed  Google Scholar 

  29. Donovan DS Jr, Papadopoulos A, Staron RB, Addesso V, Schulman L, McGregor C et al (1998) Bone mass and vitamin D deficiency in adults with advanced cystic fibrosis lung disease. Am J Respir Crit Care Med 157(6 Pt 1):1892–1899

    Article  PubMed  Google Scholar 

  30. Haworth CS, Selby PL, Webb AK, Dodd ME, Musson H, Mc LNR et al (1999) Low bone mineral density in adults with cystic fibrosis. Thorax 54(11):961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frangolias DD, Pare PD, Kendler DL, Davidson AG, Wong L, Raboud J et al (2003) Role of exercise and nutrition status on bone mineral density in cystic fibrosis. J Cyst Fibros 2(4):163–170

    Article  PubMed  Google Scholar 

  32. Legroux-Gerot I, Leroy S, Prudhomme C, Perez T, Flipo RM, Wallaert B et al (2012) Bone loss in adults with cystic fibrosis: prevalence, associated factors, and usefulness of biological markers. Joint Bone Spine 79(1):73–77

    Article  PubMed  Google Scholar 

  33. Aris RM, Ontjes DA, Buell HE, Blackwood AD, Lark RK, Caminiti M et al (2002) Abnormal bone turnover in cystic fibrosis adults. Osteoporos Int 13(2):151–157

    Article  CAS  PubMed  Google Scholar 

  34. Cobanoglu N, Atasoy H, Ozcelik U, Yalcin E, Dogru D, Kiper N et al (2009) Relation of bone mineral density with clinical and laboratory parameters in pre-pubertal children with cystic fibrosis. Pediatr Pulmonol 44(7):706–712

    Article  PubMed  Google Scholar 

  35. Dif F, Marty C, Baudoin C, de Vernejoul MC, Levi G (2004) Severe osteopenia in CFTR-null mice. Bone 35(3):595–603

    Article  CAS  PubMed  Google Scholar 

  36. Le Henaff C, Gimenez A, Hay E, Marty C, Marie P, Jacquot J (2012) The F508del mutation in cystic fibrosis transmembrane conductance regulator gene impacts bone formation. Am J Pathol 180(5):2068–2075

    Article  PubMed  Google Scholar 

  37. Shead EF, Haworth CS, Condliffe AM, McKeon DJ, Scott MA, Compston JE (2007) Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human bone. Thorax 62(7):650–651

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stalvey MS, Clines KL, Havasi V, McKibbin CR, Dunn LK, Chung WJ et al (2013) Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease. PLoS One 8(11):e80098

    Article  PubMed  PubMed Central  Google Scholar 

  39. Le Heron L, Guillaume C, Velard F, Braux J, Touqui L, Moriceau S et al (2010) Cystic fibrosis transmembrane conductance regulator (CFTR) regulates the production of osteoprotegerin (OPG) and prostaglandin (PG) E2 in human bone. J Cyst Fibros 9(1):69–72

    Article  PubMed  Google Scholar 

  40. Velard F, Delion M, Le Henaff C, Guillaume C, Gangloff S, Jacquot J et al (2014) Cystic fibrosis and bone disease: defective osteoblast maturation with the F508del mutation in cystic fibrosis transmembrane conductance regulator. Am J Respir Crit Care Med 189(6):746–748

    Article  PubMed  Google Scholar 

  41. Le Henaff C, Hay E, Velard F, Marty C, Tabary O, Marie PJ et al (2014) Enhanced F508del-CFTR channel activity ameliorates bone pathology in murine cystic fibrosis. Am J Pathol 184(4):1132–1141

    Article  PubMed  Google Scholar 

  42. Shanbhogue VV, Hansen S, Halekoh U, Brixen K (2015) Use of relative vs fixed offset distance to define region of interest at the distal radius and tibia in high-resolution peripheral quantitative computed tomography. J Clin Densitom 18(2):217–225

    Article  PubMed  Google Scholar 

  43. Putman MS, Bouxsein ML, Finkelstein JS (2015) Response letter to the editor. J Clin Endocrinol Metab 100(1):L9–L10

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

ITS images were generously created by X. Edward Guo, PhD, and Ji Wang, PhD, at Columbia University. This study was supported in part by an Endocrine Society Amgen Fellowship Award, NIH T32 DK007699-29, and NIH K23 DK102600-01A1. A Vertex Pharmaceuticals Investigator Initiated Studies Grant provided partial support for procedures in this study. The HR-pQCT measurements were made possible by an NCRR Shared Equipment Grant (1S10RR023405-01). This project was also supported by the Harvard Clinical and Translational Science Center (Grant Numbers 8 UL1 TR000170-05, 1 UL1TR001102-01, and 1 UL1RR025758-04). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The authors gratefully acknowledge the support of the dedicated staff of the MGH Clinical Research Center, and the Research Groups of the MGH and BCH CF Centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Putman.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putman, M.S., Greenblatt, L.B., Sicilian, L. et al. Young adults with cystic fibrosis have altered trabecular microstructure by ITS-based morphological analysis. Osteoporos Int 27, 2497–2505 (2016). https://doi.org/10.1007/s00198-016-3557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3557-z

Keywords

Navigation