Skip to main content

Advertisement

Log in

Children and adolescents with cystic fibrosis display moderate bone microarchitecture abnormalities: data from high-resolution peripheral quantitative computed tomography

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We investigated whether bone microstructure assessed by high-resolution peripheral quantitative tomography (HR-pQCT) could be altered in children and teenagers with cystic fibrosis (CF). In comparison to their healthy counterparts, bone microstructure was mildly affected at the tibial level only.

Introduction

Cystic fibrosis-related bone disease (CFBD) may alter bone health, ultimately predisposing patients to bone fractures. Our aim was to assess bone microstructure using high-resolution peripheral quantitative tomography (HR-pQCT) in a cohort of children and teenagers with CF in comparison to age-, puberty-, and gender-matched healthy volunteers (HVs).

Methods

In this single-center, prospective, cross-sectional study, we evaluated the HR-pQCT bone parameters of CF patients and compared them to those of the healthy volunteers.

Results

At a median age of 15.4 [range, 10.5–17.9] years, 37 CF patients (21 boys) with 91% [range, 46–138%] median forced expiratory volume in 1 s were included. At the ultradistal tibia, CF patients had a smaller bone cross-sectional area (579 [range, 399–1087] mm2) than HVs (655 [range, 445–981] mm2) (p = 0.027), related to a decreased trabecular area, without any significant differences for height. No other differences were found (trabecular number, separation, thickness, or distribution) at the radial or tibial levels. Bone structure was different in patients receiving ursodeoxycholic acid and those bearing two F508del mutations.

Conclusion

In our cohort of children and teenagers with good nutritional and lung function status, bone microstructure evaluated with HR-pQCT was not severely affected. Minimal microstructure abnormalities observed at the tibial level may be related to the cystic fibrosis transmembrane conductance regulator defect alone; the long-term consequences of such impairment will require further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Paccou J, Zeboulon N, Combescure C et al (2009) The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: a systematic literature review with meta-analysis. Calcif Tissue Int 86:1–7. doi:10.1007/s00223−009−9316−9

    Article  PubMed  Google Scholar 

  2. Le Heron L, Guillaume C, Velard F et al (2010) Cystic fibrosis transmembrane conductance regulator (CFTR) regulates the production of osteoprotegerin (OPG) and prostaglandin (PG) E2 in human bone. J Cyst Fibros 9:69–72. doi:10.1016/j.jcf.2009.11.005

    Article  PubMed  Google Scholar 

  3. Stalvey MS, Clines GA (2013) Cystic fibrosis-related bone disease: insights into a growing problem. Curr Opin Endocrinol Diabetes Obes 20:547–552. doi:10.1097/01.med.0000436191.87727.ec

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sermet-Gaudelus I, Castanet M, Retsch-Bogart G, Aris RM (2009) Update on cystic fibrosis-related bone disease: a special focus on children. Paediatr Respir Rev 10:134–142. doi:10.1016/j.prrv.2009.05.001

    Article  PubMed  Google Scholar 

  5. Reix P, Bellon G, Braillon P (2009) Bone mineral and body composition alterations in paediatric cystic fibrosis patients. Pediatr Radiol 40:301–308. doi:10.1007/s00247−009−1446−8

    Article  PubMed  Google Scholar 

  6. Sermet-Gaudelus I, Souberbielle JC, Ruiz JC et al (2007) Low bone mineral density in young children with cystic fibrosis. Am J Respir Crit Care Med 175:951–957. doi:10.1164/rccm.200606−776OC

    Article  PubMed  Google Scholar 

  7. Stahl M, Holfelder C, Kneppo C et al (2016) Multiple prevalent fractures in relation to macroscopic bone architecture in patients with cystic fibrosis. J Cyst Fibros Off J Eur Cyst Fibros Soc. doi:10.1016/j.jcf.2016.06.004

  8. Aris RM, Merkel PA, Bachrach LK et al (2005) Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab 90:1888–1896. doi:10.1210/jc.2004−1629

    Article  CAS  PubMed  Google Scholar 

  9. Sermet-Gaudelus I, Bianchi ML, Garabédian M et al (2011) European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros 10(Supplement 2):S16–S23. doi:10.1016/S1569−1993(11)60004−0

    Article  PubMed  Google Scholar 

  10. Stephenson A, Jamal S, Dowdell T et al (2006) Prevalence of vertebral fractures in adults with cystic fibrosis and their relationship to bone mineral density. Chest 130:539–544. doi:10.1378/chest.130.2.539

    Article  PubMed  Google Scholar 

  11. Bacchetta J, Boutroy S, Delmas P-D, Cochat P (2009) Nouvelles techniques d’imagerie osseuse: application chez l’enfant atteint de maladie rénale chronique. Arch Pédiatrie 16:1482–1490. doi:10.1016/j.arcped.2009.08.004

    Article  CAS  Google Scholar 

  12. De Schepper J, Roggen I, Van Biervliet S et al (2012) Comparative bone status assessment by dual energy X-ray absorptiometry, peripheral quantitative computed tomography and quantitative ultrasound in adolescents and young adults with cystic fibrosis. J Cyst Fibros 11:119–124. doi:10.1016/j.jcf.2011.10.004

    Article  PubMed  Google Scholar 

  13. Gensburger D, Boutroy S, Chapurlat R, et al (2016) Reduced bone volumetric density and weak correlation between infection and bone markers in cystic fibrosis adult patients. Osteoporos Int 1–11. doi: 10.1007/s00198-016-3612-9

  14. Putman MS, Milliren CE, Derrico N et al (2014) Compromised bone microarchitecture and estimated bone strength in young adults with cystic fibrosis. J Clin Endocrinol Metab 99:3399–3407. doi:10.1210/jc.2014−1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Putman MS, Greenblatt LB, Sicilian L, et al (2016) Young adults with cystic fibrosis have altered trabecular microstructure by ITS-based morphological analysis. Osteoporos Int 1–9. doi: 10.1007/s00198−016−3557-z

  16. Bacchetta J, Fargue S, Boutroy S et al (2010) Bone metabolism in oxalosis: a single-center study using new imaging techniques and biomarkers. Pediatr Nephrol 25:1081–1089. doi:10.1007/s00467−010−1453-x

    Article  PubMed  Google Scholar 

  17. Bacchetta J, Boutroy S, Vilayphiou N et al (2011) Bone assessment in children with chronic kidney disease: data from two new bone imaging techniques in a single-center pilot study. Pediatr Nephrol 26:587–595. doi:10.1007/s00467−010−1745−1

    Article  PubMed  Google Scholar 

  18. Kelly A, Schall J, Stallings VA, Zemel BS (2016) Trabecular and cortical bone deficits are present in children and adolescents with cystic fibrosis. Bone 90:7–14. doi:10.1016/j.bone.2016.04.030

    Article  PubMed  Google Scholar 

  19. Bishop N, Arundel P, Clark E et al (2014) Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom 17:275–280. doi:10.1016/j.jocd.2014.01.004

    Article  PubMed  Google Scholar 

  20. Guañabens N, Parés A (2010) Liver and bone. Arch Biochem Biophys 503:84–94. doi:10.1016/j.abb.2010.05.030

    Article  PubMed  Google Scholar 

  21. Debray D, Kelly D, Houwen R et al (2011) Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J Cyst Fibros 10:S29–S36. doi:10.1016/S1569−1993(11)60006−4

    Article  PubMed  Google Scholar 

  22. Quanjer PH, Stanojevic S, Cole TJ et al (2012) Multi-ethnic reference values for spirometry for the 3–95 year age range: the global lung function 2012 equations. Eur Respir J 40:1324–1343. doi:10.1183/09031936.00080312

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zapletal A, Paul T, Samánek M (1977) Significance of contemporary methods of lung function testing for the detection of airway obstruction in children and adolescents (author’s transl). Z Für Erkrank Atmungsorgane 149:343–371

    CAS  Google Scholar 

  24. Hui SL, Perkins AJ, Harezlak J et al (2010) Velocities of bone mineral accrual in black and white American children. J Bone Miner Res 25:1527–1535. doi:10.1002/jbmr.43

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sands D, Mielus M, Umławska W et al (2015) Evaluation of factors related to bone disease in Polish children and adolescents with cystic fibrosis. Adv Med Sci 60:315–320. doi:10.1016/j.advms.2015.05.002

    Article  PubMed  Google Scholar 

  26. Velard F, Delion M, Le Henaff C et al (2014) Cystic fibrosis and bone disease: defective osteoblast maturation with the F508del mutation in cystic fibrosis transmembrane conductance regulator. Am J Respir Crit Care Med 189:746–748. doi:10.1164/rccm.201312−2144LE

    Article  PubMed  Google Scholar 

  27. Street ME, Spaggiari C, Ziveri MA et al (2006) Analysis of bone mineral density and turnover in patients with cystic fibrosis: associations between the IGF system and inflammatory cytokines. Horm Res 66:162–168. doi:10.1159/000094143

    CAS  PubMed  Google Scholar 

  28. Pashuck TD, Franz SE, Altman MK et al (2009) Murine model for cystic fibrosis bone disease demonstrates osteopenia and sex-related differences in bone formation. Pediatr Res 65:311–316. doi:10.1203/PDR.0b013e3181961e80

    Article  PubMed  PubMed Central  Google Scholar 

  29. Le Henaff C, Gimenez A, Haÿ E et al (2012) The F508del mutation in cystic fibrosis transmembrane conductance regulator gene impacts bone formation. Am J Pathol 180:2068–2075. doi:10.1016/j.ajpath.2012.01.039

    Article  PubMed  Google Scholar 

  30. Luxon BA (2011) Bone disorders in chronic liver diseases. Curr Gastroenterol Rep 13:40–48. doi:10.1007/s11894−010−0166−4

    Article  PubMed  Google Scholar 

  31. Ruiz-Gaspà S, Dubreuil M, Guañabens N et al (2014) Ursodeoxycholic acid decreases bilirubin-induced osteoblast apoptosis. Eur J Clin Investig 44:1206–1214. doi:10.1111/eci.12355

    Article  Google Scholar 

  32. King SJ, Topliss DJ, Kotsimbos T et al (2005) Reduced bone density in cystic fibrosis: ΔF508 mutation is an independent risk factor. Eur Respir J 25:54–61. doi:10.1183/09031936.04.00050204

    Article  CAS  PubMed  Google Scholar 

  33. Greer RM, Buntain HM, Potter JM et al (2003) Abnormalities of the PTH-vitamin D axis and bone turnover markers in children, adolescents and adults with cystic fibrosis: comparison with healthy controls. Osteoporos Int 14:404–411. doi:10.1007/s00198−003−1388−1

    Article  CAS  PubMed  Google Scholar 

  34. West NE, Lechtzin N, Merlo CA et al (2011) Appropriate goal level for 25-hydroxyvitamin d in cystic fibrosis. Chest 140:469–474. doi:10.1378/chest.10−2114

    Article  CAS  PubMed  Google Scholar 

  35. Campion KL, McCormick WD, Warwicker J et al (2015) Pathophysiologic changes in extracellular pH modulate parathyroid calcium-sensing receptor activity and secretion via a histidine-independent mechanism. J Am Soc Nephrol JASN 26:2163–2171. doi:10.1681/ASN.2014070653

    Article  CAS  PubMed  Google Scholar 

  36. López I, Aguilera-Tejero E, Estepa JC et al (2004) Role of acidosis-induced increases in calcium on PTH secretion in acute metabolic and respiratory acidosis in the dog. Am J Physiol - Endocrinol Metab 286:E780–E785. doi:10.1152/ajpendo.00473.2003

    Article  PubMed  Google Scholar 

  37. Disthabanchong S, Martin KJ, McConkey CL, Gonzalez EA (2002) Metabolic acidosis up-regulates PTH/PTHrP receptors in UMR 106–01 osteoblast-like cells. Kidney Int 62:1171–1177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients and families for their enthusiastic and active participation in this study. We also thank Marie Perceval for setting up and managing the database and Véronique Delaup for managing the patients and families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Braun.

Ethics declarations

The study was approved by the local institutional review board (Comité de Protection des Personnes Lyon Sud Est II, #2012-029-2). Written informed consent was obtained from all parents and patients before enrollment.

Funding

Institutional funding for this study was provided by l’Appel D’Offre Jeune Chercheur des Hospices Civils de Lyon (P. Reix, 2011). Institutional funding for the VITADOS cohort was provided by the Programme Hospitalier de Recherche Clinique (PHRC) Interrégional (J. Bacchetta, 2011).

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, C., Bacchetta, J., Braillon, P. et al. Children and adolescents with cystic fibrosis display moderate bone microarchitecture abnormalities: data from high-resolution peripheral quantitative computed tomography. Osteoporos Int 28, 3179–3188 (2017). https://doi.org/10.1007/s00198-017-4179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4179-9

Keywords

Navigation