Skip to main content

Advertisement

Log in

Hyponatremia, a risk factor for osteoporosis and fractures in women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Hyponatremia has been linked to an increased risk of osteoporosis and fractures. We found an increased hazard ratio of major osteoporotic fractures adjusted for potential confounders, including osteoporosis and medication. A reduced BMD was not sufficiently explaining the association. Our data indicate that hyponatremia should be considered a risk factor for osteoporosis and fractures.

Introduction

Hyponatremia is the most common electrolyte disorder in clinical practice and could be a risk factor for both osteoporosis and fractures. Mild hyponatremia has traditionally been regarded as a benign and asymptomatic condition; however, data from large population and animal studies have led to a reappraisal of this view. The purpose of this study was to evaluate the association of hyponatremia with osteoporosis and major osteoporotic fractures (MOF) in women.

Methods

This is a historical cohort study with fracture follow-up. The study consisted of 5610 patients with available serum sodium and a bone density measurement. Information on potential risk factor was obtained through a questionnaire. Additional information on medication, comorbidities, and fractures was obtained through national registries.

Results

Hyponatremia was associated with significant lower T-scores at total hip and a borderline significant lower T-score at femoral neck in the multivariate analysis. No association was found between hyponatremia and the lumbar spine T-score. Hyponatremia was associated with an increased hazard ratio of sustaining a MOF in the period from 6 months prior to 12 months after serum sodium measurement. Finally, data showed a relationship with increasing serum sodium and an increasing T-score estimate and a decreasing hazard ratio of MOF.

Conclusions

Our data suggest that hyponatremia in women increases the risk of osteoporosis and MOF. The increased risk of MOF was independent of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gankam Kengne F, Andres C, Sattar L, Melot C, Decaux G (2008) Mild hyponatremia and risk of fracture in the ambulatory elderly. QJM: Mon J Assoc Phys 101(7):583–588. doi:10.1093/qjmed/hcn061

    Article  CAS  Google Scholar 

  2. Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G (2006) Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med 119(1):e71–e78. doi:10.1016/j.amjmed.2005.09.026

    Article  Google Scholar 

  3. Verbalis JG, Barsony J, Sugimura Y, Tian Y, Adams DJ, Carter EA, Resnick HE (2010) Hyponatremia-induced osteoporosis. J Bone Miner Res: Off J Am Soc Bone Min Res 25(3):554–563. doi:10.1359/jbmr.090827

    Article  CAS  Google Scholar 

  4. Bergstrom WH, Wallace WM (1954) Bone as a sodium and potassium reservoir. J Clin Invest 33(6):867–873. doi:10.1172/jci102959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ (Clinical research ed) 312(7041):1254–1259

    Article  CAS  Google Scholar 

  6. Holloway KL, Kotowicz MA, Lane SE, Brennan SL, Pasco JA (2015) FRAX (Aus) and falls risk: association in men and women. Bone 76:1–4. doi:10.1016/j.bone.2015.03.004

    Article  PubMed  Google Scholar 

  7. Hawkins RC (2003) Age and gender as risk factors for hyponatremia and hypernatremia. Clin Chim Acta 337(1–2):169–172

    Article  CAS  PubMed  Google Scholar 

  8. Siregar P (2011) The risk of hyponatremia in the elderly compared with younger in the hospital inpatient and outpatient. Acta Med Indones 43(3):158–161

    PubMed  Google Scholar 

  9. Cumming K, Hoyle GE, Hutchison JD, Soiza RL (2014) Prevalence, incidence and etiology of hyponatremia in elderly patients with fragility fractures. PLoS One 9(2), e88272. doi:10.1371/journal.pone.0088272

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kumar S, Berl T (1998) Sodium. Lancet 352(9123):220–228. doi:10.1016/s0140-6736(97)12169-9

    Article  CAS  PubMed  Google Scholar 

  11. Kelly T (1990) Bone Mineral reference databases for american men and women (abstract). journal of bone mineral research (5 (suppl1)):249

  12. Kanis JA, Adachi JD, Cooper C, Clark P, Cummings SR, Diaz-Curiel M, Harvey N, Hiligsmann M, Papaioannou A, Pierroz DD, Silverman SL, Szulc P (2013) Standardising the descriptive epidemiology of osteoporosis: recommendations from the epidemiology and quality of life working group of IOF. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos National Osteoporos Found USA 24(11):2763–2764. doi:10.1007/s00198-013-2413-7

    Article  CAS  Google Scholar 

  13. Pedersen CB (2011) The Danish civil registration system. Scand J Public Health 39(7 Suppl):22–25. doi:10.1177/1403494810387965

    Article  PubMed  Google Scholar 

  14. Frank L (2000) Epidemiology. When an entire country is a cohort. Science (New York, NY) 287(5462):2398–2399

    Article  CAS  Google Scholar 

  15. Kildemoes HW, Sorensen HT, Hallas J (2011) The Danish national prescription registry. Scand J Public Health 39(7 Suppl):38–41. doi:10.1177/1403494810394717

    Article  PubMed  Google Scholar 

  16. Vestergaard P, Rejnmark L, Mosekilde L (2005) Fracture risk associated with systemic and topical corticosteroids. J Intern Med 257(4):374–384. doi:10.1111/j.1365-2796.2005.01467.x

    Article  CAS  PubMed  Google Scholar 

  17. Lynge E, Sandegaard JL, Rebolj M (2011) The Danish national patient register. Scand J Public Health 39(7 Suppl):30–33. doi:10.1177/1403494811401482

    Article  PubMed  Google Scholar 

  18. Nickelsen TN (2005) Datavaliditet og dækingsgrad i Landspatientregisteret. Ugeskr Læger 2002 164(01):33–37

    Google Scholar 

  19. Vestergaard P, Mosekilde L (2002) Fracture risk in patients with celiac Disease, Crohn's disease, and ulcerative colitis: a nationwide follow-up study of 16,416 patients in Denmark. Am J Epidemiol 156(1):1–10

    Article  PubMed  Google Scholar 

  20. Vestergaard P, Rejnmark L, Mosekilde L (2009) Hypertension is a risk factor for fractures. Calcif Tissue Int 84(2):103–111. doi:10.1007/s00223-008-9198-2

    Article  CAS  PubMed  Google Scholar 

  21. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the european union: medical management, epidemiology and economic burden. A report prepared in collaboration with the international osteoporosis foundation (IOF) and the european federation of pharmaceutical industry associations (EFPIA). Arch Osteoporos 8(1–2):136. doi:10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barsony J, Manigrasso MB, Xu Q, Tam H, Verbalis JG (2013) Chronic hyponatremia exacerbates multiple manifestations of senescence in male rats. Age (Dordrecht, Netherlands) 35(2):271–288. doi:10.1007/s11357-011-9347-9

    Article  Google Scholar 

  23. Barsony J, Sugimura Y, Verbalis JG (2011) Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J Biol Chem 286(12):10864–10875. doi:10.1074/jbc.M110.155002

    Article  CAS  PubMed  Google Scholar 

  24. Afshinnia F, Sundaram B, Ackermann RJ, Wong KK (2015) Hyponatremia and osteoporosis: reappraisal of a novel association. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporosis National Osteoporos Found USA. doi:10.1007/s00198-015-3108-z

    Google Scholar 

  25. Miriam Rachel Usala G, Fernandez SJ, Mete M, Cowen L, Shara NM, Barsony J, Verbalis JG (2015) Hyponatremia is Associated with Increased Osteoporosis and Bone Fractures in a Large U. S. Health System Population. J Clin Endocrinol Metab:jc20151261. doi:10.1210/jc.2015-1261

  26. Kruse C, Eiken P, Vestergaard P (2015) Hyponatremia and osteoporosis: insights from the Danish national patient registry. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos National Osteoporos Found USA 26(3):1005–1016. doi:10.1007/s00198-014-2973-1

    Article  CAS  Google Scholar 

  27. Sandhu HS, Gilles E, DeVita MV, Panagopoulos G, Michelis MF (2009) Hyponatremia associated with large-bone fracture in elderly patients. Int Urol Nephrol 41(3):733–737. doi:10.1007/s11255-009-9585-2

    Article  PubMed  Google Scholar 

  28. Kinsella S, Moran S, Sullivan MO, Molloy MG, Eustace JA (2010) Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clin J Am Soc Nephrol: CJASN 5(2):275–280. doi:10.2215/cjn.06120809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoorn EJ, Rivadeneira F, van Meurs JB, Ziere G, Stricker BH, Hofman A, Pols HA, Zietse R, Uitterlinden AG, Zillikens MC (2011) Mild hyponatremia as a risk factor for fractures: the Rotterdam Study. J Bone Miner Res: Off J Am Soc Bone Miner Res 26(8):1822–1828. doi:10.1002/jbmr.380

    Article  CAS  Google Scholar 

  30. Jamal SA, Arampatzis S, Harrison SL, Bucur RC, Ensrud K, Orwoll ES, Bauer DC (2014) Hyponatremia and fractures: findings from the osteoporotic fractures in Men study. J Bone Miner Res: Off J Am Soc Bone Miner Res. doi:10.1002/jbmr.2383

    Google Scholar 

  31. Borgens RB (1984) Endogenous ionic currents traverse intact and damaged bone. Science (New York, NY) 225(4661):478–482

    Article  CAS  Google Scholar 

  32. Arampatzis S, Gaetcke LM, Funk GC, Schwarz C, Mohaupt M, Zimmermann H, Exadaktylos AK, Lindner G (2013) Diuretic-induced hyponatremia and osteoporotic fractures in patients admitted to the emergency department. Maturitas 75(1):81–86. doi:10.1016/j.maturitas.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  33. Heidrich FE, Stergachis A, Gross KM (1991) Diuretic drug use and the risk for hip fracture. Ann Intern Med 115(1):1–6

    Article  CAS  PubMed  Google Scholar 

  34. Schoofs MW, van der Klift M, Hofman A, de Laet CE, Herings RM, Stijnen T, Pols HA, Stricker BH (2003) Thiazide diuretics and the risk for hip fracture. Ann Intern Med 139(6):476–482

    Article  PubMed  Google Scholar 

  35. LaCroix AZ, Ott SM, Ichikawa L, Scholes D, Barlow WE (2000) Low-dose hydrochlorothiazide and preservation of bone mineral density in older adults. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 133(7):516–526

    Article  CAS  PubMed  Google Scholar 

  36. Chow KM, Szeto CC, Kwan BC, Ma TK, Leung CB, Li PK (2012) Fracture risk after thiazide-associated hyponatraemia. Internal Med J 42(7):760–764. doi:10.1111/j.1445-5994.2011.02642.x

    Article  CAS  Google Scholar 

  37. Golob AL, Laya MB (2015) Osteoporosis: screening, prevention, and management. Med Clin North Am 99(3):587–606. doi:10.1016/j.mcna.2015.01.010

    Article  PubMed  Google Scholar 

  38. Mazziotti G, Canalis E, Giustina A (2010) Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med 123(10):877–884. doi:10.1016/j.amjmed.2010.02.028

    Article  CAS  PubMed  Google Scholar 

  39. Ankjaer-Jensen A, Johnell O (1996) Prevention of osteoporosis: cost-effectiveness of different pharmaceutical treatments. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos the National Osteoporos Found USA 6(4):265–275

    Article  CAS  Google Scholar 

  40. Poikolainen K, Podkletnova I, Alho H (2002) Accuracy of quantity-frequency and graduated frequency questionnaires in measuring alcohol intake: comparison with daily diary and commonly used laboratory markers. Alcohol Alcohol 37(6):573–576

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. S. Amar.

Ethics declarations

Conflicts of interest

J. P. Holm has participated as a subinvestigator in studies by MSD and Amgen. A.O.S Amar none. L. Hyldstrup has been giving lectures sponsored by: Novartis, Lilly, Takeda/Nycomed, Novo-Nordisk, Amgen, GlaxoSmithKline, Servier, MSD, Ferrosan, Pfizer, PharmaVinci and Renapharma. Currently advisory board member for Amgen. J.E.B. Jensen : board membership Amgen, Eli Lilly, MSD, Novartis, Nycomed. Payment for lectures Amgen, Eli Lilly and MSD.

Additional information

J. P. Holm and A. O. S. Amar contributed equally to this work.

Appendices

Appendix 1

Definition of fractures

 

ICD-8

ICD-10

MOF

Spine

805xx, 806xx

S120–S122, S127, S220, S221, S320–322, S327, S327A, S328A, S328, M484, M48, T08

Lower arm

813xx plus 81248, 81258, 81298

S52

Upper arm

810xx, 811xx, 812xx. minus 81248, 81258, 81298

S42

Hip

820xx

S720–S722

Definition of alcohol-related diagnosis

 

ICD-8

ICD-10

Alcohol-related diagnosis

291xx, 57109, 57110, 303xx

E244, G312, G621, G721, I426, K292, K860, O354, P043, Q860, K70, F10, T51, Z502, Z714, Z721, 5852

Definition of medication

 

ATC

Thiazides

C03A, C03EA, C09B, C09BA, C09DA

Loop diuretics

C03C, C03EB

Potassium sparing diuretics

C03, C07B, C03EA, C03EB

Systemic glucocorticoids

H02AB

Bisphosphonates

M05BA, M05BB,

Strontium ranelate

M05BX03, M05BX53

PTH analogues

H05AA01, H05AA02, H05AA03

Denosumab

M05BX04

Raloxifen

G03XC01

ACE Inhibitors

C09A, C09B

Angiotensin II receptor blockers

C09C, C09D

SSRI

NO6AB

Definition of Charlson index

Comorbidities in Charlson index

ICD-8

ICD-10

Score

Myocardial infarction

410

121, 122, 123

1

Congestive heart failure

427.09, 427.10, 427.11, 427.19, 428.99, 782.49

I50, I11.0, I13.0, I13.2

1

Peripheral vascular disease

440–445

I70, I71, I72, I73, I74, I77

1

Cerebrovascular disease

430–438

I60–I69, G45, G46

1

Dementia

290.09–290.19, 293.09

F00–F03, F05.1, G30

1

Chronic pulmonary disease

490–493, 515–518

J40–J47, J60–J67, J68.4, J70.1, J70.3, J84.1, J92.0, J96.1, J98.2, J98.3

1

Connective tissue disease

712, 716, 734, 446, 139.99

M05, M06, M08, M09, M30–M36, D86

1

Ulcer disease

530.91, 530.98, 531–534

K22.1, K25–K28

1

Diabetes mellitus type 1 and 2

249.00, 249.06, 249.07, 249.09, 250.00, 250.06, 250.07, 250.09

E10.0, E10.1, E10.9, E11.0, E11.1, E11.9

1

Hemiplegia

344

G81, G82

2

Moderate to severe renal disease

403, 404,580–584, 590.09, 593.19, 753.10–753.19, 792

I12, I13, N00–N05, N07, N11, N14, N17–N19, Q61

2

Diabetes mellitus type 1 and 2 with end organ damage

249.01–249.05, 249.08, 250.01–250.05, 250.08

E10.2–E10.8, E11.2–E11.8

2

Any tumor

140–194

C00–C75

2

Leukemia

204–207

C91–C95

2

Lymphoma

200–203

C81–C85, C88, C90, C96

2

Metastatic solid tumor

195–199

C76–C80

6

AIDS

79.83

B21–B24

6

Mild liver disease

571, 573.01, 573.04

B18, K70.0–K70.3, K70.9, K71, K73, K74, K76.0

1

Moderate to severe liver disease

70.00, 70.02, 70.04, 70.06, 70.08, 573.00, 456

B15.0, B16.0, B16.2, B19.0, K70.4, K72, K76.6, I85

3

Appendix 2

Table 6

Table 6 Estimates and p values from multiple regression analysis of T-scores

Appendix 3

Table 7

Table 7 Hazard ratios for MOF in the final model with and without osteoporosis

Appendix 4

Table 8

Table 8 Estimates and p values from multiple regression analysis of T-scores with sodium as a continuous parameter

Appendix 5

Table 9.

Table 9 Hazard ratios for MOF with sodium as a continuous parameter, in the final model with and without osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holm, J.P., Amar, A.O.S., Hyldstrup, L. et al. Hyponatremia, a risk factor for osteoporosis and fractures in women. Osteoporos Int 27, 989–1001 (2016). https://doi.org/10.1007/s00198-015-3370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3370-0

Keyword

Navigation