Skip to main content
Log in

Renin inhibitor aliskiren exerts beneficial effect on trabecular bone by regulating skeletal renin-angiotensin system and kallikrein-kinin system in ovariectomized mice

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The skeletal renin-angiotensin system contributes to the development of osteoporosis. The renin inhibitor aliskiren exhibited beneficial effects on trabecular bone of osteoporotic mice, and this action might be mediated through angiotensin and bradykinin receptor pathways. This study implies the potential application of renin inhibitor in the management for postmenopausal osteoporosis.

Introduction

The skeletal renin-angiotensin system plays key role in the pathological process of osteoporosis. The present study is designed to elucidate the effect of renin inhibitor aliskiren on trabecular bone and its potential action mechanism in ovariectomized (OVX) mice.

Methods

The OVX mice were treated with low dose (5 mg/kg) or high dose (25 mg/kg) of aliskiren or its vehicle for 8 weeks. The bone turnover markers were measured by ELISA. The structural parameters of trabecular bone at lumbar vertebra (LV) and distal femoral metaphysis were measured by micro-CT. The expression of messenger RNA (mRNA) and protein was studied by RT-PCR and immunoblotting, respectively.

Results

Aliskiren treatment reduced urinary excretion of calcium and serum level of tartrate-resistant acid phosphatase in OVX mice. The treatment with aliskiren significantly increased bone volume (BV/TV) and connectivity density (Conn.D) of trabecular bone at LV-2 and LV-5 as well as dramatically enhanced BV/TV, Conn.D, bone mineral density (BMD/BV) and decreased bone surface (BS/BV) at the distal femoral end. Aliskiren significantly down-regulated the expression of angiotensinogen, angiotensin II (Ang II), Ang II type 1 receptor, bradykinin receptor (BR)-1, and osteocytic-specific gene sclerostin as well as the osteoclast-specific genes, including carbonic anhydrase II, matrix metalloproteinase-9, and cathepsin K.

Conclusions

This study revealed that renin inhibitor aliskiren exhibited the beneficial effects on trabecular bone of ovariectomy-induced osteoporotic mice, and the underlying mechanism for this action might be mediated through Ang II and BR signaling pathways in bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Namazi S, Ardeshir-Rouhani-Fard S, Abedtash H (2011) The effect of renin angiotensin system on tamoxifen resistance. Med Hypotheses 77:152–155

    Article  CAS  PubMed  Google Scholar 

  2. Skov J, Persson F, Frøkiær J, Christiansen JS (2014) Tissue renin-angiotensin systems: a unifying hypothesis of metabolic disease. Front Endocrinol 5:23

    Article  Google Scholar 

  3. Lau T, Carlsson PO, Leung PS (2004) Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia 47:240–248

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Z, Zhang Y, Ning G, Deb DK, Kong J, Li YC (2008) Combination therapy with AT1 receptor blocker and vitamin D analog markedly ameliorates diabetic nephropathy. Proc Natl Acad Sci U S A 105:15896–15901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Deb DK, Kong J, Ning G, Wang Y, Li G, Chen Y, Zhang Z, Strugnell S, Sabbagh Y, Arbeeny C, Li YC (2009) Long-term therapeutic effect of vitamin D analog doxercalciferol on diabetic nephropathy: strong synergism with AT1 receptor antagonist. Am J Physiol Renal Physiol 297:F791–F801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koïtka A, Cao Z, Koh P, Watson AMD, Sourris KC, Loufrani L, Soro-Paavonen A, Walther T, Woollard KJ, Jandeleit-Dahm KA, Cooper ME, Allen TJ (2010) Angiotensin II subtype 2 receptor blockade and deficiency attenuate the development of atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes. Diabetologia 53:584–592

    Article  PubMed  Google Scholar 

  7. Inaba S, Iwai M, Furuno M, Kanno H, Senba I, Okayama H, Mogi M, Higaki J, Horiuchi M (2011) Role of angiotensin-converting enzyme 2 in cardiac hypertrophy induced by nitric oxide synthase inhibition. J Hypertens 29:2236–2245

    Article  CAS  PubMed  Google Scholar 

  8. Naffah-Mazzacoratti Mda G, Gouveia TL, Simões PS, Perosa SR (2014) What have we learned about the kallikrein-kinin and renin-angiotensin systems in neurological disorders? World J Biol Chem 5:130–140

    PubMed  Google Scholar 

  9. Herr D, Bekes I, Wulff C (2013) Local renin-angiotensin system in the reproductive system. Front Endocrinol 4:150

    Article  Google Scholar 

  10. Asaba Y, Ito M, Fumoto T, Watanabe K, Fukuhara R, Takeshita S, Nimura Y, Ishida J, Fukamizu A, Ikeda K (2009) Activation of renin-angiotensin system induces osteoporosis independently of hypertension. J Bone Miner Res 24:241–250

    Article  CAS  PubMed  Google Scholar 

  11. Izu Y, Mizoguchi F, Kawamata A, Hayata T, Nakamoto T, Nakashima K, Inagami T, Ezura Y, Noda M (2009) Angiotensin II type 2 receptor blockade increases bone mass. J Biol Chem 284:4857–4864

    Article  CAS  PubMed  Google Scholar 

  12. Lamparter S, Kling L, Schrader M, Ziegler R, Pfeilschifter J (1998) Effects of angiotensin II on bone cells in vitro. J Cell Physiol 175:89–98

    Article  CAS  PubMed  Google Scholar 

  13. Kumar R, Boim MA (2009) Diversity of pathways for intracellular angiotensin II synthesis. Curr Opin Nephrol Hypertens 18:33–39

    Article  CAS  PubMed  Google Scholar 

  14. Shimizu H, Nakagami H, Osako MK, Hanayama R, Kunugiza Y, Kizawa T, Tomita T, Yoshikawa H, Ogihara T, Morishita R (2008) Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J 22:2465–2475

    Article  CAS  PubMed  Google Scholar 

  15. Hiruma Y, Inoue A, Hirose S, Hagiwara H (1997) Angiotensin II stimulates the proliferation of osteoblast-rich populations of cells from rat calvariae. Biochem Biophys Res Commun 230:176–178

    Article  CAS  PubMed  Google Scholar 

  16. Kaneko K, Ito M, Fumoto T, Fukuhara R, Ishida J, Fukamizu A, Ikeda K (2011) Physiological function of the angiotensin AT1a receptor in bone remodeling. J Bone Miner Res 26:2959–2966

    Article  CAS  PubMed  Google Scholar 

  17. Gu SS, Zhang Y, Li XL, Wu SY, Diao TY, Hai R, Deng H (2012) Involvement of the skeletal renin-angiotensin system in age-related osteoporosis of ageing mice. Biosci Biotechnol Biochem 76:1367–1371

    Article  CAS  PubMed  Google Scholar 

  18. Gu SS, Zhang Y, Wu SY, Diao TY, Gebru YA, Deng H (2012) Early molecular responses of bone to obstructive nephropathy induced by unilateral ureteral obstruction in mice. Nephrology 17:767–773

    Article  CAS  PubMed  Google Scholar 

  19. Diao TY, Pan H, Gu SS, Chen X, Zhang FY, Wong MS, Zhang Y (2014) Effects of angiotensin-converting enzyme inhibitor, captopril, on bone of mice with streptozotocin-induced type 1 diabetes. J Bone Miner Metab 32:261–270

    Article  CAS  PubMed  Google Scholar 

  20. Garcia P, Schwenzer S, Slotta JE, Scheuer C, Tami AE, Holstein JH, Histing T, Burkhardt M, Pohlemann T, Menger MD (2010) Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation—role of a local renin-angiotensin system. Br J Pharmacol 159:1672–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Wang K, Song Q, Liu R, Ji W, Ji L, Wang C (2014) Role of the local bone renin-angiotensin system in steroid-induced osteonecrosis in rabbits. Mol Med Rep 9:1128–1134

    CAS  PubMed  Google Scholar 

  22. Liu YY, Yao WM, Wu T, Xu BL, Chen F, Cui L (2011) Captopril improves osteopenia in ovariectomized rats and promotes bone formation in osteoblasts. J Bone Miner Metab 29:149–158

    Article  PubMed  Google Scholar 

  23. Yamamoto S, Kido R, Onishi Y, Fukuma S, Akizawa T, Fukagawa M, Kazama JJ, Narita I, Fukuhara S (2015) Use of renin-angiotensin system inhibitors is associated with reduction of fracture risk in hemodialysis patients. PLoS One 10:e0122691

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shimizu H, Nakagami H, Osako MK, Nakagami F, Kunugiza Y, Tomita T, Yoshikawa H, Rakugi H, Ogihara T, Morishita R (2009) Prevention of osteoporosis by angiotensin-converting enzyme inhibitor in spontaneous hypertensive rats. Hypertens Res 32:786–790

    Article  CAS  PubMed  Google Scholar 

  25. Donmez BO, Ozdemir S, Sarikanat M, Yaras N, Koc P, Demir N, Karayalcin B, Oguz N (2012) Effect of angiotensin II type 1 receptor blocker on osteoporotic rat femurs. Pharmacol Rep 64:878–888

    Article  CAS  PubMed  Google Scholar 

  26. Kang KY, Kang Y, Kim M, Kim Y, Yi H, Kim J, Jung HR, Park SH, Kim HY, Ju JH, Hong YS (2013) The effects of antihypertensive drugs on bone mineral density in ovariectomized mice. J Korean Med Sci 28:1139–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:S4–S9

    Article  PubMed  Google Scholar 

  28. Ghosh M, Majumdar SR (2014) Antihypertensive medications, bone mineral density, and fractures: a review of old cardiac drugs that provides new insights into osteoporosis. Endocrine 46:397–405

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Dong XL, Leung PC, Wong MS (2009) Differential mRNA expression profiles in proximal tibia of aged rats in response to ovariectomy and low-Ca diet. Bone 44:46–52

    Article  CAS  PubMed  Google Scholar 

  30. Wood JM, Maibaum J, Rahuel J, Grütter MG, Cohen NC, Rasetti V, Rüger H, Göschke R, Stutz S, Fuhrer W, Schilling W, Rigollier P, Yamaguchi Y, Cumin F, Baum HP, Schnell CR, Herold P, Mah R, Jensen C, O’Brien E, Stanton A, Bedigian MP (2003) Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem Biophys Res Commun 308:698–705

    Article  CAS  PubMed  Google Scholar 

  31. Persson F, Rossing P, Parving HH (2013) Direct renin inhibition in chronic kidney disease. Br J Clin Pharmacol 76:580–586

    CAS  PubMed  Google Scholar 

  32. Zhang Y, Wang Y, Chen Y, Deb DK, Sun T, Zhao Q, Li YC (2012) Inhibition of renin activity by aliskiren ameliorates diabetic nephropathy in type 1 diabetes mouse model. J Diabetes Mellitus 2:353–360

    Article  Google Scholar 

  33. Riccioni G (2013) The role of direct renin inhibitors in the treatment of the hypertensive diabetic patient. Ther Adv Endocrinol Metab 4:139–145

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gandhi S, Srinivasan B, Akarte AS (2013) Aliskiren improves insulin resistance and ameliorates diabetic renal vascular complications in STZ-induced diabetic rats. J Renin-Angiotensin Aldosterone Syst 14:3–13

    Article  PubMed  Google Scholar 

  35. Nussberger J, Wuerzner G, Jensen C, Brunner HR (2002) Angiotensin II suppression in humans by the orally active renin inhibitor aliskiren (SPP100): comparison with enalapril. Hypertension 39:E1–E8

    Article  CAS  PubMed  Google Scholar 

  36. Koid SS, Ziogas J, Campbell DJ (2014) Aliskiren reduces myocardial ischemia-reperfusion injury by a bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanism. Hypertension 63:768–773

    Article  CAS  PubMed  Google Scholar 

  37. Desjarlais M, Dussault S, Dhahri W, Mathieu R, Rivard A (2015) Direct renin inhibition with aliskiren improves ischemia-induced neovascularization: blood pressure-independent effect. Atherosclerosis 242:450–460

    Article  CAS  PubMed  Google Scholar 

  38. Yong QC, Thomas CM, Seqqat R, Chandel N, Baker KM, Kumar R (2013) Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors. Cardiovasc Diabetol 12:169

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moriya H, Kobayashi S, Ohtake T, Tutumi D, Mochida Y, Ishioka K, Oka M, Maesato K, Hidaka S, Nomura S (2013) Aliskiren, a direct renin inhibitor, improves vascular endothelial function in patients on hemodialysis independent of antihypertensive effect—a pilot study. Kidney Blood Press Res 37:190–198

    Article  CAS  PubMed  Google Scholar 

  40. Li YC (2007) Inhibition of renin: an updated review of the development of renin inhibitors. Curr Opin Investig Drugs 8:750–757

    CAS  PubMed  Google Scholar 

  41. Zhang YF, Qin L, Leung PC, Kwok TC (2012) The effect of angiotensin-converting enzyme inhibitor use on bone loss in elderly Chinese. J Bone Miner Metab 30:666–673

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Diao TY, Gu SS, Wu SY, Gebru YA, Chen X, Wang JY, Ran S, Wong MS (2014) Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin. J Renin-Angiotensin Aldosterone Syst 15:218–227

    Article  CAS  PubMed  Google Scholar 

  43. Stimpel M, Jee WS, Ma Y, Yamamoto N, Chen Y (1995) Impact of antihypertensive therapy on postmenopausal osteoporosis: effects of the angiotensin converting enzyme inhibitor Moexipril, 17beta-estradiol and their combination on the ovariectomy-induced cancellous bone loss in young rats. J Hypertens 13:1852–1856

    Article  CAS  PubMed  Google Scholar 

  44. Kwok T, Leung J, Zhang YF, Bauer D, Ensrud KE, Barrett-Connor E, Leung PC, Osteoporotic Fractures in Men (MrOS) Research Group (2012) Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men? Osteoporos Int 23:2159–2167

    Article  CAS  PubMed  Google Scholar 

  45. Masunari N, Fujiwara S, Nakata Y, Furukawa K, Kasagi F (2008) Effect of angiotensin converting enzyme inhibitor and benzodiazepine intake on bone loss in older Japanese. Hiroshima J Med Sci 57:17–25

    PubMed  Google Scholar 

  46. Kim KR, Kim HJ, Lee SK, Ma GT, Park KK, Chung WY (2015) 15-deoxy-δ12,14-prostaglandin j2 inhibits Osteolytic breast cancer bone metastasis and estrogen deficiency-induced bone loss. PLoS One 10:e0122764

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li Y, Shen GS, Yu C, Li GF, Shen JK, Xu YJ, Gong JP (2015) Local bone interaction between renin-angiotensin system and kallikrein-kinin system in diabetic rat. Int J Clin Exp Pathol 8:1604–1612

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Roux S (2010) New treatment targets in osteoporosis. Joint Bone Spine 77:222–228

    Article  CAS  PubMed  Google Scholar 

  49. Yayama K, Okamoto H (2008) Angiotensin II-induced vasodilation via type 2 receptor: role of bradykinin and nitric oxide. Int Immunopharmacol 8:312–318

    Article  CAS  PubMed  Google Scholar 

  50. Horiuchi M, Iwanami J, Mogi M (2012) Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond) 123:193–203

    Article  CAS  Google Scholar 

  51. Namsolleck P, Recarti C, Foulquier S, Steckelings UM, Unger T (2014) AT (2) receptor and tissue injury: therapeutic implications. Curr Hypertens Rep 16:416

    Article  PubMed  PubMed Central  Google Scholar 

  52. Souza PP, Brechter AB, Reis RI, Costa CA, Lundberg P, Lerner UH (2013) IL-4 and IL-13 inhibit IL-1β and TNF-α induced kinin B1 and B2 receptors through a STAT6-dependent mechanism. Br J Pharmacol 169:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srivastava S, Sharma K, Kumar N, Roy P (2014) Bradykinin regulates osteoblast differentiation by Akt/ERK/NFκB signaling axis. J Cell Physiol 229:2088–2105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 81202894).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Ethics declarations

Conflicts of interest

None.

Additional information

Y. Zhang and L. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, L., Song, Y. et al. Renin inhibitor aliskiren exerts beneficial effect on trabecular bone by regulating skeletal renin-angiotensin system and kallikrein-kinin system in ovariectomized mice. Osteoporos Int 27, 1083–1092 (2016). https://doi.org/10.1007/s00198-015-3348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3348-y

Keywords

Navigation